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Abstract—1In order to close the sense-plan-act loop, a robot
requires several capabilities: it must match perceived context
with general knowledge about the environment, instantiate
plans into the metric space of the real world, and detect
and react to contingencies. All of these capabilities include
some form of spatial reasoning — however, at different levels
of abstraction. Perception generates metric spatial knowledge,
while general knowledge about the environment is often quali-
tative in nature. Similarly, plans may call for the achievement
of qualitative spatial relations, but actions must be precisely
instantiated in metric space. This paper focuses on integrating
qualitative and metric spatial reasoning for closing the loop
around perception and actuation. We propose a knowledge
representation and reasoning technique, grounded on well-
established spatial calculi, for combining qualitative and metric
knowledge and obtaining solutions expressed in actionable
metric terms.

I. INTRODUCTION

When we plan to achieve activities we rely on several,
different abstractions of the world around us. These abstrac-
tions, many of which are learned through experience, are
often qualitative: we know that knives should be put to the
right of dishes and forks to the left when setting a table.
When performing the actions to set the table, this qualitative
knowledge is used to instantiate precise placing actions in
metric space.

Whereas bridging this gap is natural for humans, it is
not at all evident how to endow robots with this capability.
A robot’s world is entirely metric: it perceives events and
carries out actions in metric time, it can localize, displace
itself and perceive objects in a reference frame. Yet spec-
ifying sophisticated robot behavior in purely metric terms
is difficult, as the specification would have to be long
and overly specialized to the particular setting in which
the robot operates. Conversely, qualitative representations
facilitate modeling by humans — although they often fail to
capture the details that are necessary for proper execution.
Integrating temporal, spatial, and other reasoning capabilities
in the sense-plan-act loop is an important step towards
building general purpose robots (see Related Work).

In this paper we focus on spatial knowledge. We ad-
dress the issue of bridging the gap between the metric and
qualitative dimensions of a robot’s knowledge (whether it
is perceived or modeled). We attach metric semantics to
qualitative spatial relations and state formal properties of
the obtained calculus. These properties enable reasoning in
three important phases of the sense-plan-act loop, namely
(1) matching perceived context with general knowledge
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about the environment, (2) instantiating plans into the metric
space of the real world, and (3) detecting and reacting
to contingencies. In all three processes, different levels of
abstraction are used: perception generates metric spatial
knowledge, while general knowledge about the environment
is often qualitative in nature; similarly, plans may call for
the achievement of qualitative spatial relations, but actions
must be precisely instantiated in metric space.

Our knowledge representation formalism is grounded on
well-established spatial calculi, and allows to uniformly
account for metric and qualitative spatial knowledge in
processes (1), (2) and (3). The calculus affords efficient
algorithms for use on-line, and is expressive enough to avoid
strong assumptions when modeling the perceived world. The
representation is based on spatial relations which allow to
model both topology and direction. Along the course of this
paper, we will explicitly refer to processes (1-3).

II. RELATED WORK

Bridging the gap between the robot’s metric world and
its symbolic knowledge is an issue that has been studied in
automated planning [1]. Planning domains provide a causal
abstraction of the real world, based on which a robot can
derive which actions should be performed to achieve a given
goal. Al techniques (predominantly constraint-based) have
been explored for the purpose of bridging the gap between
symbolic planning problems and real-world execution with
metric time [2] and resources [3]. However, time and re-
sources remain virtually the only metric aspects of a robot’s
environment that are considered at a qualitative level in the
sense-plan-act loop.

Work on combining qualitative spatial knowledge (e.g.,
knives should be placed to the right of forks) with perception,
planning and actuation is sparse. This problem has been ad-
dressed in the context of perceptual anchoring [4], proposing
qualitative spatial relations for scene interpretation (partially
addressing point (1) above). The work is an example of inte-
grating metric and qualitative spatial relations, in that qual-
itative relations are inferred from observed metric relations.
Work in Cognitive Vision has addressed this issue [5] by
focusing on scene understanding. Work on structural pattern
recognition [6] has also provided techniques for matching
qualitative spatial knowledge (representing a specified struc-
ture) to perceived context. In all of the above, qualitative
relations do not belong to a well-defined calculus, which
would facilitate logical reasoning, rather they are tailored to
capture specific features (e.g., distance, orientation, shape)
which are useful for pattern specification and recognition in
the particular application.
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Fig. 1. The thirteen relations in Allen’s Interval Algebra with specified bounds.

Significant work has been done in endowing robots with
metric (as opposed to qualitative) spatial reasoning capabil-
ities. Many focus on geometric reasoning, some employing
metric constraints in combination with planning [7], thus
partially addressing point (2), others proposing ad-hoc metric
spatial reasoning for analyzing perceived context [8].

Robotics has leveraged the richness of qualitative spatial
calculi predominantly for representation rather than rea-
soning [9]. Examples include robot navigation and self-
localization [10], motion planning [11] and task plan-
ning [12]. Research has started to study how to combine
qualitative and metric spatial reasoning in robotics, specif-
ically by modeling qualitative knowledge through domain-
specific predicates and performing metric spatial reasoning
though procedural attachment (point (2) above) [13]. To the
best of our knowledge, no work has employed well-founded
qualitative spatial calculi in conjunction with metric spatial
reasoning.

III. COMBINING QUALITATIVE AND METRIC RELATIONS

Spatial expressions in natural language assert properties
like distance, size, shape, topology, and direction. Although
often completely qualitative, these expressions subsume nu-
merous specific metric relations. The spatial calculus that
is chosen for representing a robot’s knowledge should have
a similar level of abstraction, as it is often humans who
specify this knowledge. There exist several well-known and
well-studied qualitative calculi, most of which represent spa-
tial relations as constraints. Each of these constraint-based
calculi focuses on one category of spatial concepts — e.g.,
Region Connection Calculus (RCC) [14] allows to represent
topologies, while Cardinal Direction Calculus (CDC) [15]
is appropriate for orientation. Rectangle Algebra (RA) [16]
can be regarded as an approach to combining topological
and cardinal relations. RA is an extension of Allen’s Interval
Algebra (IA) [17] to two dimensions. It considers as a spatial
entity a bounding box (rectangle) whose sides are parallel
to the axes of some orthogonal basis in a two-dimensional
Euclidean space.

The set of atomic relations in RA is defined as Bra =
{{(r1,r2) :r1,r2 € Bia} where By, is the set of Allen’s Interval
relations, namely the thirteen possible relations between in-
tervals (see Figure 1): “before” (b), “meets” (m), “overlaps”

(0), “during” (d), “starts” (s), “finishes” (f), their inverses
(e.g., bi), and “equals” (eq). The set of RA relations is the
power set of Bra. Each RA relation is a disjunction of
atomic relations that model the possible mutual placement
of two spatial entities represented as axis-parallel rectangles.
For instance (see Figure 2), if object B is in the relation
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Fig. 2. Relation B (b,b) A in RA.

(b,b) with object A, then A is Northeast of B (relation in
CDC); also, these two objects are disjoint from each other
(relation in RCC). Relations between bounding boxes can be
represented as binary constraints in a constraint network:
Definition 1: A rectangle constraint network is a pair N =
(V,C), where
o V={Vi,...,V,} is a set of variables representing axis-
parallel rectangles;
o C:V xV — 28R is a mapping which defines the binary
constraints over the variables.

In the following paragraphs we outline two incremental
additions to RA which facilitate the important processes in
the sense-plan-act loop (1-3).

A. Attaching Bounds to RA Relations

Given a set V = {Ay,...,A,} of intervals, we denote
Al’,AT,...,A;,A;r the extreme points of the intervals in
V (see Figure 2). Given a rectangle A, A, is the interval
corresponding to the projection of A onto the first axis
(resp. A, for the second axis).

Qualitative relations subsume metric relations between
rectangles. For instance, B (b,b) A represents all possible

placements in which Ay > B and A, > By. We wish to



attach bounds to the metric semantics of RA, and we choose
to do so through minimum and maximum distances be-
tween the axis intervals. For instance, B (b[5,13],b[0,+)) A
restricts placements to those in which Ay > Bl +5 and
Ay < B} +13. Constraining the distance between points is a
well known concept in temporal reasoning [18], where metric
knowledge is represented as simple distance constraints in
the form [ < vy, — vy < u, where v; and v, are variables
representing points and [/, u] are bounds on their distance. We
employ simple distance constraints to represent the metric
semantics of qualitative relations, as well as the metric
bounds of these relations. We call the algebra so obtained
Augmented Rectangle Algebra (ARA). The relations in ARA
are qualitative RA relations, that are augmented with metric
bounds on each component IA relation (see Figure 1).

The question which remains to be answered is how to
reason upon constraints in ARA. Reasoning about qualita-
tive and metric relations using a single constraint network
which encodes both aspects has been studied for temporal
problems [19]. This idea was extended to fuzzy spatial
constraints [20]. The only approach we are aware of which
tackles the problem of combining crisp qualitative and metric
spatial constraints is proposed by Condotta [21]. However,
the approach falls short of providing a usable, hybrid quali-
tative and metric language that is provably tractable.

For the purposes of spatial reasoning for robots, we do
not require the full expressiveness of ARA. In particular, we
focus on convex ARA relations, which are relations whose
qualitative components are convex RA relations. Convex RA
relations are composed exclusively of convex IA relations,
which are defined by [22]. For example, {b,m,0} is a convex
IA relation, whereas {b,0} is not. Convex ARA relations
impose convex disjunctions of IA relations on each axis.
For example, A {(b,0),(m,0)} B, is convex because the TA
relation in the x dimension A, {b,m} B, is convex, as is the
elementary relation A, {o} By. Convex IA relations can be
translated to a set of simple distance constraints. Specifically,
the metric translation of convex IA relations is the union
of the translation into simple distance constraints of each
atomic IA relation in the disjunction. The simple distance
constraint translation of a convex ARA relation is thus two
sets of simple distance constraints: one deriving from the
translation of IA relations in the x axis, one deriving from
the TA relations in the y axis. Henceforth, we denote with
metric(r) = metric,(r) Umetric, () the translation into simple
distance constraints of a convex ARA relation r.

Note that specifying bounds on an otherwise convex
qualitative relation may lead to the impossibility to translate
the relation to simple distance constraints. For instance,
Af {b,m} B is convex and translates to A} < B, whereas
A {b[5,00),m} By is not convex, and requires the disjunc-
tive metric translation A] +5 < B, V Al = B, . We thus
disallow to specify bounds on ARA relations composed
of non-atomic RA relations. This allows to employ simple
distance constraints (which do not admit disjunction) for
modeling the metric semantics of ARA relations. Sets of
simple distance constraints constitute a Simple Temporal

Problem [18], which is tractable.

Convex ARA relations are a powerful representational
tool. For instance, we can model the requirement that object
A is “to the left of” object B by at least Scm while allowing
the disjunction of all other relations in the y axis. This is
expressed by the constraint A {(b[5,),convexify(b,a))} B,
where convexify(b,a) represents the disjunction of all (qual-
itative) IA relations. Indeed, given the IA relation {r,r,},
it is possible to compute the disjuncts that must be added
in order to render the relation convex [23]. The resulting
convexify(+) function runs in O(|C|).

IV. CONSISTENCY CHECKING

It is possible to show that the consistency of convex ARA
constraint networks is tractable:

Theorem 1: The consistency of a rectangle constraint net-

work M = (V,C), where C is a set of convex ARA relations,
is decided by the consistency of the set of simple distance
constraints |J,.cc metric(r).
The proof, omitted here for lack of space, involves a method
introduced by van Beek [24] for translating qualitative TA
relations to metric ones, as well as results by Condotta ([21],
Theorem 2). This formal property allows to process both
qualitative constraints and their metric bounds uniformly at
the metric level, i.e., reasoning at the metric level computes
the consequence of both qualitative and metric relations
among rectangles. Consistency of a set of simple distance
constraints can be proved by low-order polynomial constraint
propagation algorithms [25], [26]. The result of constraint
propagation is a set of admissible bounds on the placement
of rectangles, a metric solution which is directly understand-
able by the robot. Notice that placement does not include
orientation of the object.

Although expressive, ARA alone is not sufficiently versa-
tile for our needs. Specifically, it lacks unary relations for
modeling the size and placement of objects. Note that size
and placement are essential for modeling perceived context.
We thus introduce the unary relation Size|ly, uy][ly, uy], which
bounds the distances between two points of the same rectan-
gle along one axis, i.e., two constraints imposing minimum
and maximum x and y dimensions I, uy, [, and u,. ARA
constraints together with Size constraints express a robot’s
knowledge about orientation and topology of spatial entities.
We also introduce the relation Az[l},u3][L}, u}][13,u3] [}, u3],
which bounds the absolute placement of bounding boxes. The

bounds [1},u;][l},u,] provide 2D bounds for the position of

the lower left corner (x',y"), while [IZ,u2][I2,u?] provide 2D
bounds for the position of the upper right corner (x?,y?).
We denote the algebra obtained by enriching ARA with
Size and At constraints ARA™. It is straightforward to prove
that ARA™ with convex relations remains tractable:
Theorem 2: The consistency of a rectangle constraint net-
work M = (V,C), where C is a set of convex ARA™ relations,
is decided by the consistency of |J,c- metric(r).
An ARA™ network can be used to represent uniformly both
a desired spatial layout of objects and the observed spatial
layout. We reduce the problem of matching observed spatial



relations and perceived context (1) to consistency checking
as follows: a set of rectangles V, is created to model the
observed objects, and each v, € V,, is constrained with an At
constraint reflecting its position; all knowledge is encoded
as further rectangles V and ARA™ relations; a constraint
vo{eq,eq}v is added to unify each observed object v, €V,
with its counterpart v € V. If this network is consistent, then
the observed state of the world adheres to the the robot’s
spatial knowledge.

Maintaining a network representing both qualitative and
metric relations enables to do more than matching perceived
context to knowledge. More in general, the constraint net-
work forms a query of our desire. We can use constraint
networks to answer queries for instantiating planned actions.
For instance, we can construct a constraint network contain-
ing At relations for all perceived objects, as well as variables
for object(s) that are not in the scene and need to be placed.
A solution to this spatial constraint satisfaction problem (i.e.,
a substitution of coordinates to points that is consistent)
represents a placement of the objects in the scene that is
consistent with qualitative and metric knowledge. In order
to support this capability (2), we require a way to extract
and discern between different solutions in a way that is
appropriate for the robotic domain, as shown below.

V. SOLUTION EXTRACTION

Enforcing the consistency of the network of simple dis-
tance constraints |J,cometric(r) updates the bounds of all
rectangles. The assignment of all lower bounds or of all
upper bounds after consistency enforcement are both valid
solutions [18]. Other possible solutions can be obtained
through incremental propagation.

In a robotic context, assignments other than the lower
and upper bound solutions are preferable. Specifically, we
are interested in obtaining the solution that has maximum
distance from these two solutions, as the region that is given
to a robot to place an object should tolerate the inaccuracy
of manipulation. In other words, if the robot does not place
an object exactly within the region, the spatial layout should
still be consistent. For this reason, we prefer assignments that
are close to the center of the solution space. Obtaining the
exactly centered solution is an optimization problem that is
too computationally demanding to solve on-line, therefore we
sacrifice the optimality of the solution in favor of efficiency.

Given M = (V,C), we compute an approximation of the
most centered solution for each rectangle A € V by leveraging
the concept of 2D representation of an interval [27]. The
interval A, (similarly for A,) is represented as a window in
the space of start and end position (see Figure 3). The win-
dow is characterized by four numbers, namely, minimum and
maximum positions, and minimum and maximum lengths.
All possible placements of A, after consistency is enforced
are within a convex polygon in the 2D space. We choose as
“most centered” placement for A, the center of mass of this
polygon, thus obtaining an assignment of A" and A; .

As opposed to lower and upper bounds, which together
constitute a consistent assignment for all points, the collec-

tion of all assignments extracted as described above does
not constitute a consistent assignment [18]. In order to
obtain one, the extracted coordinates of each rectangle must
be encoded as additional A constraints and incrementally
propagated. The procedure for determining a solution thus
consists of (a) extracting the center of mass for the x and
y intervals of one rectangle, (b) adding one Af constraint
reflecting this choice, and (c) applying incremental constraint
propagation to update the bounds of the points of other
rectangles. This quadratic' procedure is repeated |V| times,
yielding a complexity of ®(|V|?).
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Fig. 3. Two-dimensional representation of an interval.

The query network for the task of action instantiation is
formulated as follows: as for the scene/knowledge matching
task, an initial network is constructed with observed and
known relations; objects to be placed are represented by
variables in V, and a consistent assignment computed as
above for the objects in V can be used to determine the
coordinates for placing actions (2).

VI. CULPRIT DETECTION, RECOVERY
RECOMMENDATION

We now turn our attention to spatial reasoning for detect-
ing and reacting to contingencies (3). Suppose a robot has
to place a dish on a table in which several other dishware
have already been placed, and the robot is given a set of
spatial relations which describe a well-set table (e.g., that a
dish is to be placed between fork and knife, possibly within
certain bounds). As described above, the robot instantiates
the placing action by computing the solution to the query
constraint network. However, the network turns out to be
inconsistent, indicating that it cannot achieve the goal of
placing a dish.

It may be possible to recover from the failure by finding
the source(s) of inconsistency in the ARA™ network. The
source(s) of inconsistency are constraints, specifically At
constraints deriving from observation (e.g., the fork and

'We employ an incremental all-pairs-shortest-path algorithm to enforce
consistency of the simple distance constraints [25], which requires @(|V|?)
time.



knife are so close that a dish cannot fit between them).
Eliminating the inconsistency thus means to relax one or
more At constraints. The power set of Af constraints in the
network contains all possible culprit sets”. If there exists at
least one culprit set such that its removal from the network
makes the network consistent, then a solution of this network
contains new positions for the objects related to constraints in
the culprit set. These new positions can be used to instantiate
new actions that bring about a consistent situation — e.g.,
moving the knife to the right, moving the fork to the left,
or both. Which of the alternative courses of action ( culprit
sets) is more convenient?

The process of finding a desirable culprit set is a search
process which employs two heuristics. The process is shown
in Algorithm RecommendRecovery. The input is an

Function RecommendRecovery (V,C) : Vieplace SV

1 Cq + {vAr:vAr€C}
2 for i=1 to |Cy| do

3 culprits < {{v| Aty,...,v; At;} € 2a1}

4 culprit « aIgminC’Eculprits {ng(V, C\C/)}
5 if (V,C\ culprit) is consistent then

6 | return {v; :v; At € culprit}

7 return 0

inconsistent ARA™ network, and the output is a set of
rectangles representing objects whose replacement leads to
consistency. The first heuristic favors small sets, the rationale
being that moving fewer objects is less prone to failure than
moving many (line 2). The second heuristic favors moves
which least affect the spatial rigidity of the network (line
4). To define this heuristic, we employ a measure known as
the root mean square (RMS) rigidity of a network of simple
distance constraints [28]. The measure builds on the notion
of relative rigidity of pairs of points (A}, BY), (Af,B;), and
so on (similarly for the y axis), namely

1

Al) pl)
Rig(Ay’,By’) = )
1 +dmax (Ai) 7B)(c)) - dmin (Agf)7B§¢))

where dmax (+) and dpin(-) are the maximum and minimum
distances between the points. The measure has a maximum
value of 1, since dpax (A)(C'>,B,(v')) — dmin (ASC'),B)(C')) > (0, which
occurs when the points are both fixed. The RMS rigidity of
the network Sy = e metricy(r) is defined as

. 2
Rig(Sx) = \/ZV(ZV—I)

The rigidity of a RA constraint network M = (V,C) is the
average of Rig(Sy) and Rig(Sy). This measure also ranges
in [0,1]: low rigidity entails that the admissible bounds of
objects are such that there is significant slack in determining
new placements, whereas high rigidity means that the con-
straints in the network afford placement options which are
close to failure; therefore manipulation must be more precise.

Y (risal 5))

(A,B)eV

2We exclude Ar constraints on immovable objects such as the table.

The complexity of culprit detection is exponential in the
number of Af constraints, however, this number is often small
as it corresponds to the number of objects in the scene.

VII. EXPERIMENT

Several experiments were performed with a real robotic
platform (Scitos G5 mobile platform with a Kinova Jaco
arm) and with a simulated PR2 using ROS/Gazebo. Here we
describe the latter. The robot’s general knowledge states that
well-set tables are such that forks are to the left and knives to
the right of cups, that all objects should be at least 5cm from
the edge of the table, and that all objects should be at most
20cm far from the side of the table from which the robot is
operating (see Figure 4), due to reachability constraints:

Fork (d[5,+e0)[5,+0),d[5,20][5, <)) Table
Knife (d[5,+o0)[5,+e0),d[5,20][5, <)) Table
Cup (d[5,40)[5,4e0),d[5,20][5,4<)) Table
Fork (b[10,15],d) Cup
Knife (bi[10,15],d) Cup
Fork Size[4,8][18,24]
Knife Size[4,8][18,24]
Cup Size[4,7][4,7]

The fork, the knife and the cup are modeled as bounding
boxes whose sides are parallel to the axes of the reference
frame of their support plane (table). Cups were used instead
of dishes and cuboids instead of forks and knives to facilitate
manipulation. The planner used was a simple implementation
of a Hierarchical Task Network planner. There are two tables
in the environment (table-1 and table-2). The initial condition
(see Figure 4(a)) consisted in the robot being in front of
table-1, on top of which a cup was placed; a fork and a knife
were placed on table-2 (see Figure 4(b)), which was located
to the right of table-1; the goal consisted in placing the cup
on table-2 such that the table was well set. The planner
generated a high-level plan prescribing the robot to pick the
cup from table-1, move to and approach table-2, and place
the cup on it. Upon arriving at table-2 (see Figure 4(b)), four

,ﬁ vi IL = vii_t
(a) (b)

(c) (d)

Fig. 4. Salient moments of a test run with a simulated PR2.

variables representing rectangles are generated: table2,
cup, fork, knife. The robot observes the placement of
the fork, knife and table, and appropriate At constraints (in
the table reference frame) are imposed on the rectangles,
reflecting their observed placement:

fork Af[31,31][11,11][37,37][30,30]
knife Ar[40,40][10,10][46,46][29,29)
table2 Ar[0,0][0,0][100, 100][100, 100]



Observed and general knowledge are combined by imposing
constraints that unify the observed objects with the objects
in the general knowledge:

fork (eq,eq) Fork
table2 (eq,eq) Table
knife (eq,eq) Knife

All relations and variables combined constitute an ARA™
constraint network M = (V,C). Through consistency check-
ing, M is found to be inconsistent, as the fork and knife are
too close to each other (see Figure 4(a)). At this point, two
possible culprit sets with cardinality one are identified (line
3), namely ¢; = {fork A¢f[...]} and ¢, = {knife Af[...]}.
Their heuristic values are respectively Rig((V,C\ ¢1)) =
0.2720 and Rig((V,C\ c2)) =0.2716. Consequently, the plan
is modified to achieve the further goal of picking and re-
placing the knife with the free arm.

When execution of the modified plan resumes (see Fig-
ure 4(c)), the placing actions in the plan are dispatched to
the PR2’s executive. The executive requires a bounding box
for each placement action, within which possible points for
placing an object are assessed for reachability by a kinematic
solver and a 3D motion planner. The bounding box provided
to the executive is obtained through the procedure described
in Section V.

In all experiments, both real and simulated, the same
planning and spatial reasoning algorithm was used, and the
general knowledge (encoded as ARA™ relations) was never
changed. Videos of the experiments are available at http:
//aass.oru.se/~mmi/IR0OS-2013-WS-video/.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented ARA™, a knowledge representation
formalism for integrated metric and qualitative spatial rea-
soning. By uniformly representing metric bounds along-
side qualitative relations, the calculus can be used both to
specify spatial knowledge in human-accessible terms and
to represent perceived context. As we have shown through
proof-of-concept experiments, ARA' can be leveraged to
realize the three important reasoning tasks in the sense-plan-
act loop. Future work will focus on developing a planner
which can take into account spatial relations in ARA™ in
the causal reasoning process. This will allow the planner
to automatically infer the plan modifications necessary in
response to recovery recommendation as part of its search.
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