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Summary

The contribution in this deliverable is on multisensory object exploration and perception, as
detailed in Tasks T4.3, T4.4, and T4.5. The ability to manipulate objects depends on knowledge
of the objects' geometry, pose, and surface properties. Understanding both object properties and
how these a�ect the interaction with the manipulator is necessary for using the objects as tools
for performing subsequent tasks.
We explore di�erent perceptual methods exploiting di�erent sensory modalities, to gain
understanding of what properties an object possesses and what types of manipulation action is
possible for a speci�c object with a speci�c grasp. Algorithms have been developed both for
detecting object properties and learning manipulation a�ordances.
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Chapter 1

Published Results

The results for this deliverable have been accepted for publication in peer-reviewed venues. This
section contains a short description of the contributions, and references to the published reports,
which are appended to this document.

1.1 Multimodal Shape and Pose Perception

As detailed in task T4.4, we study perception of the geometric shape and pose of di�erent
objects, using a gaussian process framework to model geometric shape based on observations.
The developed approach is initialized with a visual image of the object, and a series of tactile
interactions is then performed to re�ne the model. The method includes a rational exploration
strategy to determine the targets for tactile exploration that will reduce uncertainty the most. As
detailed in task T4.3, we also study how we can combine external visual measurements of
articulated objects (a robot) with a rough estimate of internal state (joint con�guration) to
re�ne a highly accurate model of that state using virtual visual servoing. The results are
published in [1, 2].

1.2 Learning Manipulation A�ordances

In the context of tasks T4.5, T2.3, and T5.4, we study the problem of measuring and learning
manipulation a�ordances of di�erent object/grasp combinations. We present a probabilistic
framework for grasp modeling and stability assessment. The framework facilitates assessment of
grasp success in a goal-oriented way, taking into account both geometric constraints for task
a�ordances and stability requirements speci�c for a task. We also address the problem of
identifying continuous bounds on the forces and torques that can be applied on a grasped object
before slippage occurs. This is formulated as a regression problem which is solved using a
Gaussian Process approach. We demonstrate a dual armed humanoid robot that can
autonomously learn force and torque bounds and use these to execute actions on objects such as
sliding and pushing. The results are published in [3, 4].
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Enhancing Visual Perception of Shape through Tactile Glances

M	arten Bj̈orkman, Yasemin Bekiroglu, Virgile Ḧogman, and Danica Kragic

Abstract— Object shape information is an important param-
eter in robot grasping tasks. However, it may be dif�cult to
obtain accurate models of novel objects due to incomplete and
noisy sensory measurements. In addition, object shape may
change due to frequent interaction with the object (cereal boxes,
etc). In this paper, we present a probabilistic approach for
learning object models based on visual and tactile perception
through physical interaction with an object. Our robot explores
unknown objects by touching them strategically at parts that
are uncertain in terms of shape. The robot starts by using only
visual features to form an initial hypothesis about the object
shape, then gradually adds tactile measurements to re�ne the
object model. Our experiments involve ten objects of varying
shapes and sizes in a real setup. The results show that our
method is capable of choosing a small number of touches to
construct object models similar to real object shapes and to
determine similarities among acquired models.

I. I NTRODUCTION

One of the reasons that makes the process of autonomous
grasping challenging is that object properties required for
grasp planning such as shape are commonly not known
a priori. In addition, sensory information used to extract
this information from the environment, e.g. vision, is prone
to error. Processes prior to shape extraction such as scene
segmentation are not perfectly accurate due to several issues,
e.g., occlusions and noisy measurements. Besides object
shape, conceptual high-level object category information is
another important input that can be used. In particular, for
goal-oriented grasp planning, different instances from the
same category can be grasped in a similar way for a particular
task. For instance, bottles should be grasped from a side for
a pouring task, so as not to block the opening.

Humans interact with the environment using rich sensory
information. Studies show that both visual and haptic modal-
ities contribute to the combined percept [1]–[3]. Results
from [3] suggest that observers integrate visual and haptic
shape information of real 3D objects and that bimodal shape
estimates are more reliable than shape estimates that rely on
either vision or touch alone.

The goal of our work is to complement visual information
with tactile sensing in order to acquire 3D object models. We
investigate how to deal with uncertainties in the sensory data
to extract object shape and category. Given a scene like the
one shown in Fig. 1, with an object in the center of view,
our goal is to gain insight on what manipulation actions the

M. Björkman, Y. Bekiro�glu, V. Högman, D. Kragic are with the Centre
for Autonomous Systems and the Computer Vision and Active Perception
Lab, CSC, KTH Royal Institute of Technology, Stockholm, Sweden. Email:
f celle j yaseminb j virgile j dani g @kth.se . This work was supported by the Swedish
Research Council and the EU projects eSMCs (FP7-IST-270212) and
RoboHow.Cog (FP7-ICT-288533).
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Fig. 1: Extracting object model: We rely on visual mea-
surements from a Kinect and tactile measurements from the
�ngers. The model is formed based on the point cloud (in
yellow) from the camera and the contact points (in red).

object affords. If the shape of the object were known, one
could get some idea of what actions to consider, especially
if the shape is similar to an object that has already been
manipulated. Much information can be provided through
stereo vision, using e.g. a Kinect device. Regardless of which
stereo vision system is used, however, only one side of
an object is seen, i.e., the one side facing the cameras.
Without any additional sensory modalities, one can only
make quali�ed guesses of what the occluded side looks like,
using assumptions such as symmetry [4], assumptions that
may well be incorrect. In this paper we instead propose
touch as a means to get additional information. By carefully
touching the object, we will show how an object model
can be created, a model that provides enough information
to categorize the object based on shape.



II. RELATED WORK AND CONTRIBUTIONS

In robotics, object shape estimation has been studied with
unimodal data, i.e., only visual [5] or tactile [6] sensing, and
bimodal data with visual and tactile sensing combined [7].
Clearly, vision alone delivers useful information about object
shape. Krainin et al. [5] proposed a method where a robot
picks up and moves an object in front of a sensor. Their
approach based on Kalman �lters is able to build 3D models
of unknown objects using a depth camera observing the
robot's hand moving the object. However, they showed that
the approach may produce failures with poor alignment in
case of a combination of high uncertainty in the object pose,
nondistinctive object geometry (completely planar surface)
or fairly uniform color and poor lighting conditions. Tactile
information can be used to alleviate such problems.

Bierbaum et al. [8] introduced the idea of using Dy-
namic Potential Fields for tactile exploration to build a con-
tact/tactile point cloud of an unknown object. Their system
requires a rough initial estimate about the object position,
orientation and dimension, then exhaustively performs grasps
in unexplored regions. Faria et al. [9] also builds contact
point clouds in an exhaustive way. They however follow a
probabilistic approach to store the extracted tactile points
in a volumetric map. In their experiments, a human subject
wearing a glove with magnetic tracking sensors to obtain
�ngertip positions performs grasps that follow the contour of
objects. Meier et al. [6] followed a similar strategy and used
a probabilistic approach, Kalman �lters, to build a model of
the contact point cloud. Their robot grasps objects at different
heights and positions also varying the orientation of the hand.
Their results show that the acquired models can successfully
be used for classi�cation.

There are approaches that supplement vision with more
sensory information especially where visual sensing is weak,
e.g., occluded object parts. Maldonado et al. [10] used a
proximity sensor to scan the unseen parts of an object by
a depth camera without touching the object. They combined
the point cloud from the camera and the sensor and built a 3D
Gaussian point representation based on the convex hull of the
complete point cloud. Their representation simply contains
the centroid and the shape of the object through the mean and
the covariance matrix of the Gaussian distribution. Dragiev
et al. [7] has included laser data in addition to haptic mea-
surements in order to complement vision. They proposed to
use Gaussian Process Implicit Surfaces to fuse the uncertain
sensory data and showed that this representation can be used
to control reaching and grasping such that the hand is moved
and oriented towards the object and grasps aligning the
�ngers according to the object shape. There are also studies
that focus on object recognition without explicitly modeling
the full 3D shape, but rather representing the objects based
on visual [11], tactile [12], [13] or both features [14].

Differently from the aforementioned approaches, we focus
on building object models that can be extracted with a
small number of actions (touches) in order to understand the
category objects belong to, rather than exhaustively trying to

explore the whole object. This is an iterative process where
the robot executes more touches as it is less con�dent about
the object shape. In summary, our contributions can be listed
as follows:

� We incrementally include tactile readings in the shape
estimation to further re�ne the object model that is
initialized based on visual measurements only.

� We use a probabilistic approach to shape estimation
through Gaussian Process regression to deal with un-
certainties in sensory measurements.

� Instead of an exhaustive exploration, we obtain a model
of a given object by selecting where to touch next, given
the object regions where the shape estimation is most
uncertain.

� Our system is able to build models that can be used for
shape categorization after a small number of touches.

III. O BJECT MODELLING

In this section, we describe how objects are represented
based on visual and tactile measurements. We introduce
Gaussian Process regression modeling of Implicit Surfaces,
the strategy to determine how to acquire tactile data and the
shape descriptors used for measuring similarities between
different objects.

A. Visual Measurements

An observed object is segmented from its background
using a segmentation and tracking system that works over
sequences of touches. The system uses stereo vision, in our
case a Kinect device, in an heterogeneous MRF based frame-
work [15]. The framework uses color and depth information
to divide the scene into either planar surfaces, bounded
objects or uniform clutter models. The planar and uniform
models are automatically initialized, while an ellipsoid used
to model the observed object is initiated by a point that
is manually placed inside the corresponding image region.
From the resulting object segments we get point clouds that
serve as starting points for object modelling. Later we will
complement these points with tactile readings from touches.

B. Implicit surfaces

From a set of measurements of 3D pointsf x i ; i = 1 :::N g
that are located on the surface of an object, we now describe
how to derive implicit surfaces for representation. The model
should later be used for deciding object category based on
shape. In our case the measurements originate from stereo
vision as well as tactile readings. With a functionf : R3 7!
R, we de�ne an implicit surface by the supporting points
x 2 R3 that satisfy

f (x) = 0 :

The functionf (x) is modelled by Gaussian Process (GP)
regression [16], with each observationy = f (x)+ � assumed
to be subjected to zero-mean Gaussian noise,� � N (0; � 2

n ).
The shape of the GP is governed by a thin plate covariance
function [17]

cov(f (x i ); f (x j )) = k(x i ; x j ) = 2 jr j3 � 3Rr 2 + R3;
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Fig. 2: Evolution of object models against the number of touches (t.) for the cylinders: (a) Initial models based solely on
visual (v.) measurements depicted by yellow points. The models are oriented to show the back sides that are not visible
by the camera. Highest uncertainty is represented by red color and dark green regions correspond to least uncertainty. (b)
Models after including tactile measurements from one touch applied to the region with highest uncertainty. Contact points
obtained by touching are depicted by red points. (c) Models after 4 touches. (d) Models after 12 touches which were found
suf�cient to group all the objects con�dently. (e) Models after exhaustively exploring the objects which require 54 touches
with our setup. (f) The real objects for comparison.

wherer = jx i � x j j andR is a maximum possible value of
r . This covariance function has slightly better characteristics
than the more frequently used squared exponential function,
in particular for rectangular objects where the �atness of
surfaces needs to be preserved. Quantitatively, however, we
have not observed any signi�cant differences between the
two when applied for categorization.

The model is learned from a set of tuples(xi ; yi ), where
yi = 0 for the stereo vision or tactile measurements. Since
a physical object, at least those that can be acted on by a
robot, occupies a certain volume in 3D space, the implicit
surfaces need to be compact (closed and bounded). In order
to guarantee this, we place additionally exterior points, for
which yi = +1 , on the boundaries of the scene and a single
interior point that is forced to be inside the closed surface
with yi = � 1.

In the later experiments, this interior point was chosen as
the centroid of the stereo point cloud displaced by1 cm along
the direction of the camera, assuming that this is the smallest
object thickness one can expect. With objects assumed to be
located within a cube with side lengthsL = 30 cm and
centered at the centroid, the parameterR was set to

p
3L .

The only remaining hyperparameter is the expected noise
level which is set to� 2

n = 0 :1. The value was chosen so as
a balance between the smoothness of the surfaces and the
noise in the integration of tactile and visual readings.

C. Action selection and cue integration

With GP regression we do not explicitly get a function
f (x), but the mean�f and varianceV(f ) of all possible
functions that could �t the measurements. The variance can
be used as a measure of uncertainty, with higher variance
for points far away from already recorded measurements.
Examples of implicit surfaces and variances can be seen in
Fig. 2a. A surface is given by points for which the mean
is zero and the colors illustrate the corresponding variances,
with red for points of highest variance. The stereo vision
point clouds are shown as yellow points, most of which are
occluded by the objects in the �gure.

To re�ne the object models and decrease the uncertainty,
the robotic hand is guided towards those points for which the
variance is large in order to select a position for touching.
We call these touchesordered touches in the experiments
below, as opposed torandom touches where new touches
are selected in random order. The arm-hand con�guration
has earlier been calibrated with respect to the camera system,
with a precision of a few millimeters. The highest variance
point is searched for in a discrete action space de�ned by the
vertical position and the approach angle, both of which are
computed with respect to the centroid of the current model.
For each possible action, the closest point to each respective
tactile sensor pad is found on the implicit surface. The
action selected for execution is then based on the maximum
variance found among all actions and sensor pads.

Touches are then executed in sequence and the GP model
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Fig. 3: Convergence of curvature point clusters using ordered (solid) and random (dashed) touches with respect to the �nal
result after up to 54 touches (x-axis). Plots from random touches are based on the average from 10 runs and are thus
smoother than those of the ordered touches.

is updated accordingly, as new measurements are integrated
with the model. To speed up computations, the measurement
set is made sparser to about two thousand points1. This is
necessary since the computational cost of the GP increases to
the cube of number of points. Recorded tactile measurements
can be seen as red points in Fig. 2 for an increasing number
of touches. In some cases, these points are displaced with
respect to the implicit surface, which might happen if the
object moves considerably when it is touched. To minimize
these displacements, which is critical for long sequences of
touches, the object frame is constantly updated for each new
touch. This is done by registering the stereo vision point
clouds, given by the segmentation system, before and after
a touch using the Iterative Closest Point algorithm [18] and
transforming new measurements back to the original frame.

D. Shape Descriptors

Representing object shape as a GP or a mesh derived from
points on the resulting implicit surface is not straightforward,
if the goal is to compare shapes for action selection. Instead
we represent the extracted implicit surfaces with shape
descriptors that capture information invariant to possible ma-
nipulation actions, while discarding redundant information.
Two very different objects may afford similar actions, while
two seemingly similar objects might not. For example, a
rectangular box and a cylinder typically require different
grasping strategies, but they may well appear similar when
e.g., represented as ellipsoids, if aspect ratios are similar.

In this work, we look at two different rotation and trans-
lation invariant shape descriptors; 3D Zernike moments and
surface curvatures. Zernike moments have successfully been
used for shape retrieval [19] and are attractive due to the
�exibility and low number of dimensions required, as well
as the fact that Euclidean distances can be used for shape
comparison. For the Zernike moments, voxelization is �rst
applied in a 3D grid with voxels of side lengthl = 0 :75 cm,
keeping the interior voxels for which the GP means are�f � 0
at their center points.

1On a 3.2 MHz Core i7 CPU the cost of computing the GP model and
associated shape descriptor is about4 s using PCL, VTK and Eigen.

For comparison using surface curvatures, the Marching
Cubes algorithm [20] is �rst applied to the same grid to �nd
a triangular mesh representing the implicit surface. From this
mesh, principal curvatures are then computed [21], with one
2D measurement per vertex point. The shape of an object is
thus represented by a sample set of about 500 measurements
of curvatures. A kernel based two sample test [22] is used
to compare two such representations, using Gaussian kernels
with standard deviations of 0.25, which yields a soft decision
on the similarity between the sample sets.

IV. EXPERIMENTAL EVALUATION

In this section, we �rst describe our experimental platform
and then present results from shape estimation and catego-
rization experiments comparing touch selection strategies and
shape descriptors.

The experimental robot platform is composed of an indus-
trial Kuka arm (6 dof), a three-�nger Schunk Dextrous hand
(7 dof) equipped with tactile sensing arrays, and a Kinect
stereo vision camera. The robot can acquire tactile imprints
via pressure sensitive tactile pads mounted on the Schunk
hand's �ngers. Each �nger of the hand has 2 tactile sensor
arrays composed of 6x13 and 6x14 cells, which yields at
most 486 tactile points after one touch. For each touch, the
hand is set to a �xed initial joint con�guration where the
thumb opposes the other two �ngers as seen in Fig. 1, then
�ngers are closed until contact is sensed.

In an earlier study [23] we concluded that the object class
was an important factor, if one wants to determine what
grasping action to pursue to ful�ll particular tasks, tasks such
as hand-over, pouring or dish-washing. However, the object
class was not derived directly from sensory data, but given
manually prior to the experiments. In this work, we aim to
automate this process by learning shape-dependent features
to replace the manually set object class. Our starting point
is thus a set of objects for which we know the respective
affordances from earlier experiments. These ten objects can
be seen in Fig. 4, with names indicating the similarity
in afforded actions. The end goal is to use stereo vision
and tactile measurements through a series of touches to
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Fig. 4: Spectral embeddings of curvature point clusters, after 0 (left), 1, 4, 12 and 54 (right) touches, using ordered (�rst
row) and random (middle row) touches, as well as with Zernike moments and ordered touches (last row). Ordered touches
lead to faster convergence than random touches, and Zernike moments cluster objects more based on similarity in object
aspect ratios, than similarities in affording grasp actions.

determine which grasping action the object would afford.
The question is: how many touches this would require and
what representation should one aim for?
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Fig. 5: Similarity matrices using up to 54 touches with
columns and rows given by the objects in Fig. 4 using either
curvature measures (left) or Zernike moments (right).

A. Experimental results

The ten objects were placed on a table-top with the Kinect
camera overlooking objects from one side. To fully cover
an object with tactile measurements, up to 54 touches (27

for cyl-2 and 18 forbox-2 due to their lower heights) were
performed from the side parallel to the table in a grid of
9 angles (22:5� apart) and 6 heights (spaced at a vertical
distance of 2 cm) with respect to the table. The tactile
measurements are illustrated as red points in Fig. 2. From
the resulting implicit surface model, shape descriptors based
on curvatures and Zernike moments (up to order 10) were
computed and analyzed.

The convergence of the curvature based descriptors was
studied by computing the distances between the descriptors
after different numbers of touches and the �nal one. In
Fig. 3 the convergence is shown using either ordered touches
computed from points of maximum GP variance or touches
selected randomly. The randomly generated sequences of
touches were executed 10 times and then averaged. Thus the
corresponding curves are slightly smoother than those of the
ordered touches. The difference between the two strategies
is not consistent. For most objects the difference is small
and for some objects random touches are sometimes better,
in particular in the beginning. The reason is because ordered
pushes are computed from implicit surfaces obtained so far
and at an early stage the shapes are still mostly unknown. For
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Fig. 6: Evolution of object models against the number of touches for the spray bottles and the boxes. See Fig. 2 for details.

the box shaped objects, the �rst ordered push is usually at a
corner edge on the back side of the object, when a preferable
push would instead have been on one of the sides. Thus it
takes another push or two for the ordered touches to catch
up. From the graphs in Fig. 3, as well as from Fig. 2 and
6, it can be concluded that most changes occur during the
initial ten touches.

As an illustration of the similarity between different ob-
jects, similarity matrices were computed for both curvature
and Zernike based shape descriptors, which are given in
Fig. 5. From the structures of the two matrices it can be
concluded that while the curvatures capture classes relevant
for grasping, Zernike moment does not do so to the same
degree. In fact, the grouping is quite different for Zernike
moments and more related to the aspect ratios of the objects
than the curvatures.

This can be more easily illustrated with spectral clustering.
Using the method of Ng et al. [24], we computed 2D spectral
embeddings from the similarity matrices, embeddings that
are shown in Fig. 4 for different numbers of touches. Here
the objectcyl-3 is grouped withbox-1andbox-3for Zernike
moments, due their similar height/width ratios. Whereas the
elongatedcyl-2 andcyl-4 are similar, they are very different
from the shorter cylindercyl-1. Even if box-1is a bit distant
from box-3 using curvature measures, the three classes can
still be trivially found using e.g. k-means clustering. From

the embeddings, the bene�ts of ordered touches can also
be seen, compared to the random ones. Already after four
touches, the three classes are grouped, even if it is not until
12 touches thebox-1 is closer to the other boxes than the
group of spray bottles. The reason for this is that this box
is thinner than the other boxes and since the GPs tend to
smoothen edges, it is more like a spray bottle after too few
touches. The thin plate prior tends to weaken this effect
compared to a typical exponential one.
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Fig. 7: Evolution of quotient between within- and between-
category distances with random (dashed) and ordered (solid)
touches using curvatures, as the number of touches increases.



A �nal illustration of the bene�ts of ordered touches for
shape discrimination can be seen in Fig.7, where the quotient
between within- and between-category distances are shown
for an increasing number of touches. The quotient stabilizes
after only about ten ordered touches, but for random touches
at least 25 touches are required. Thus even if the bene�ts
of ordered touches are sometimes limited when studying
individual objects, they are considerable for categorization.

V. CONCLUSIONS

This paper has presented a method2 for creation of object
models from visual and tactile measurements, with the goal
of later applying these for classi�cation and manipulation.
From an initial set of visual measurements, an object model
is re�ned by touching the corresponding object on surface
points predicted to be most uncertain. Given a curvature
based representation of object shape, it was shown that about
ten touches are suf�cient for objects to be grouped into
clusters relevant for manipulation. What remains to be tested
in future work, however, is to what extent this representation
captures manipulation affordances and can be directly used
for action selection, preferably without using an intermediate
step of supervised object classi�cation.

A weakness of the current system arises from the fact that
GPs have a computational cost proportional to the number of
measurement points cubed. To cope with this we currently
sample from the total set of points to make the problem
computationally tractable. However, there are methods for
sparse GPs that choose an optimal subset of points instead
[25], [26], which will become a necessity in particular if
measurements from additional modalities are later included.

The presented work can be extended in several directions.
We intend to investigate more descriptors, other than surface
curvatures and Zernike moments, that can be useful for object
categorization. We will further integrate the presented ap-
proach with a pushing mechanism that can provide additional
information on object affordances, e.g. rolling or sliding,
potentially leading to more informed decisions about whether
more measurements are needed given a particular task. Grasp
planners e.g., often need information on object category [23],
[27] to plan goal-directed grasps, where objects from the
same category can be grasped in a similar way. Hence, we
also plan to test the obtained object models for grasping tasks
by using them for grasp planning.
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Integrating 3D Features and Virtual Visual Servoing for Hand-Eye and
Humanoid Robot Pose Estimation

Xavi Gratal, Christian Smith, Mårten Björkman and Danica Kragic

Abstract— In this paper, we propose an approach for vision-
based pose estimation of a robot hand or full-body pose. The
method is based onvirtual visual servoingusing a CAD model
of the robot and it combines 2-D image features with depth
features. The method can be applied to estimate either the
pose of a robot hand or pose of the whole body given that its
joint con�guration is known. We present experimental results
that show the performance of the approach as demonstrated on
both a mobile humanoid robot and a stationary manipulator.

I. I NTRODUCTION

Most of the object grasping and manipulation tasks require
the pose between the robot hand and the object to be known
prior to or during execution of the grasp. Although power
grasping may not need a precise pose of the robot hand rela-
tive to the object, precision grasps and in-hand manipulation
require a high level of accuracy [1]. In many cases, the exact
model of the robot arm may not be available and forward
kinematics is not accurate enough to guide grasping [2].
Vision-based hand pose estimation can alleviate this problem
and enable control without an extra step requiring position
or image-based visual servoing.

Similar requirements arise when grasping and manipula-
tion tasks are performed by several robots where the relative
position of the robots with respect to each other must be
known [3]. In this case, one robot can obtain its relative
position with respect to another robot by identifying the full
pose of the robot body or solely the pose of its hand.

In this paper, we propose an approach for vision-based
pose estimation of a robot hand or full-body pose. The
method is based on Virtual Visual Servoing that uses RGB-
D images together with a CAD model of the robot, to
continuously track the pose of a robot with respect to the
camera, or between different parts of a robot. The main
contributions of this work are:

� The integration of 2-D and 3-D information into the
Virtual Visual Servoing framework. Our method, given
an approximate initial pose estimate, re�nes it iteratively
to obtain a more precise estimate. We show that the use
of 3-D information improves the estimate in comparison
to using only 2-D images.

� A method for pose tracking of a robot in joint space
given that its con�guration is known. This adds the
challenge of having to track each of the links of the
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robot, which places special requirements on rendering
for virtual visual servoing. As we will demonstrate, our
system allows us to treat each joint in the same way
that we treat each of the components of the motion of
the robot, thus making it suitable for complex models.

This paper is organized as follows: in Section II we review
related work. The proposed methodology is presented in
Section III and the results of the experimental evaluation are
presented in Section IV. We conclude the paper in Section V.

II. RELATED WORK

In general, it is possible to use any tracking method to
retrieve the pose of the manipulator. The existing methods
can be divided in two groups: appearance-based (also re-
ferred to as global) [6] and feature-based (also referred to as
local). These methods differ mostly from each other in the
kind of features that are used, the matching algorithm and
the optimization method. Appearance-based methods have
commonly been used for obtaining the pose of a moving
camera [7], [8] or for coarse pose estimation of objects
that occupy a substantial portion of the image or are easily
segmented [9]–[12]. There are also approaches that rely on
the use of �ducial markers [4], [5] that may limit the mobility
of the manipulator, due to the requierment of markers being
continuously in the visual �eld of the camera.

The features commonly employed for tracking are corners
or edges. These are extracted using some interest point detec-
tor [13], [14] and then encoded into a local descriptor [15]
to ease the matching of the features with the ones stored
in the model. These kinds of features usually work better
with textured objects, and can be problematic with robotic
manipulators, which usually consist of �at, shiny surfaces
which change with illumination. For the optimization part of
the method, if the points are correctly matched and detectable
in the views with arbitrary precision, three points are enough
to solve the problem [16]. In general, more points are needed,
and methods exist that are robust in the presence of noise due
to incorrect matches or inaccuracy in point detection [17]–
[19]. Most of the systems based on these methods use
features extracted from 2-D images as input, and are thus
highly sensitive to viewpoint changes. Our method, by using
a full 3-D CAD model of the tracked object, is more tolerant
to viewpoint changes. Some methods, such as [20], also use
a CAD model for tracking the object, but can only support
simple models, with a few hundreds of polygons, and lack
direct support for tracking a complete kinematic chain.

Virtual Visual Servoing (VVS) [21] is an iterative opti-
mization method where given a real image of the object for
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where we make it explicit that this transformation depends
on the current estimation of the position and rotation of
the manipulator and the joint con�guration. To project the
resulting point into the image plane, we use the projection
matrix P , which must correspond with the projection matrix
for the camera model of the real camera. The point(u; v) in
the image can then be obtained as:
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Using this transformation we generate three different maps.
I s(u; v) contains 1 where a point was rendered and 0 for
the background.D s(u; v) contains the depth of the rendered
point. It is also used during the rendering process for
occlusion culling. Finally,Ts(u; v) contains the index of the
link for the corresponding pixel.

C. Image features

As mentioned before, the rendered and real images are
compared using image features. In our previous work [22],
we used only edges in the 2D image as a feature. Here, image
edges are still used, but they are combined with new features
to increase the robustness and accuracy of the system.

1) Image edges:We use a Canny operator for edge
detection. We extract edges in both the real and virtual
images, and the vector between an edge point in one image
and the closest edge point in the other image gives us a
directed error vector. For ef�ciency, this is implemented
using the distance transform method: for each real image,
a map is created which assigns to each point in the map,
the position of the closest edge point. Then, for each edge
point in the virtual image, the error vector can be obtained
by a simple lookup in that map. Since our method assumes
an initial pose estimate, edges should only be matched when
their orientations are similar. To enforce that, 8 maps are
generated, which record the closest edge within a certain
range of orientations. Then, for each edge point in the virtual
image, the lookup is performed only in the map which best
corresponds to the orientation of the edge point.

2) Image depth:One of the important parts of the system
is the choice of appropriate features for the raw depth infor-
mation. SIFT-like 3-D features, such as the one introduced
in [24] are a possibility, but they suffer from the same
drawbacks as SIFT for the 2-dimensional case. Robotic
surfaces are often �at, and the matching of features is an
expensive operation that would need to be performed for
every frame. It is also possible to use the depth information
directly as a feature. In [25], the depth map is assumed to be
smooth, and the difference between the depths of each point
in the source and target images is used as a feature. The
main drawback of this approach is that it leads to incorrect

values in the edges of the object, and is extremely sensitive
to small occlusions, such as the ones that can be caused by
cables in robotic environments. Also, we do not have depth
information for the whole scene, but only for the manipulator,
which will usually only cover a small part of the depth map.

The approach we apply is to use the distance from one
3-D point obtained from the virtual image to the closest
point obtained in the real image. The 3-D image is actually
an edge image, in the sense that each point corresponds to
what would be an edge in fronto-parallel 2-D cuts of the
scene, so this method has similar advantages to the one we
adopted for the 2-D information. We implement it again
using a 3-D version of the distance transform, where we
create, for the real image, a 3-D map of the distance from
each point in space to the nearest extracted point. Then, for
each depth point in the virtual image, we just need to perform
a lookup for the nearest point in the 3-D map, and we obtain
a directed error vector. Another practical advantage of using
this method is that it is very similar to the one used for 2-D
edges, so it can be easily integrated into our framework.

3) SURF features:The previous features meet the key
requirements of speed and work well with textureless objects,
but their main drawback is that since each point in one
image is compared to the closest point in the other image,
the performance degrades when the initial pose is bad. To
improve the performance in such cases, we need features that
can be robustly matched between the images and we chose
to use SURF [26]. Since our CAD models are not textured,
we cannot directly detect SURF features in the rendered
image. We could generate texture maps for our CAD models,
but even then, detecting SURF features for every generated
virtual image would be prohibitively expensive. Instead, we
enrich our CAD model with pre-detected SURF features. In
an of�ine process, we detect SURF features in different parts
of our model, and for each feature we record its 3D position
within the CAD model, together with information about the
viewpoint, the detection size and the feature descriptor. Then,
during the pose estimation loop, SURF features are detected
in each captured image, and their descriptors matched against
the database of stored features. Matches that are not consis-
tent in terms of viewpoint and detection size are discarded.
The distance between the feature as detected in the real image
and the projection of the recorded position into the rendered
image is then used as the feature to minimize.

D. Visual Servoing

The basic idea behind visual servoing is to create an
error vector which is the difference between the desired
and measured values for a series of features, and then map
this error directly to robot motion. Lets(t) be a vector
of feature values which are measured in the image. In our
case, it is constructed, at each iteration, with the distances
d between the detected points in the real and synthetic
images ass(t) =

�
d1; d2; : : : ; dn

� T
. Then _s(t) will be the

rate of change of these distances with time asH c
a (R c

a ; t c
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is updated to improve the �t between real and synthetic
images. The change in this transformation can be described



TABLE I

ESTIMATION ERRORS IN THE RETRIEVED POSE FORKUKA ARM AND NAO ROBOT.

KUKA arm NAO

simulation real data simulation real data

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

Translation error
parallel to image plane

11.3 mm 9.8 mm 15.8 mm 12.1 mm 10.2 mm 9.7 mm 17.1 mm 11.7 mm

Translation error
perpendicular to image plane

40.1 mm 9.2 mm 46.3 mm 9.7 mm 30.7 mm 9.9 mm 39.3 mm 9.6 mm

Rotation error 1.01 � 0.63 � 1.43 � 0.93 � 1.23 � 0.79 � 1.17 � 1.08 �

by a translational velocityT (t) = [ Tx (t); Ty (t); Tz (t)]T and
a rotational velocity
 (t) = [ ! x (t); ! y (t); ! z (t)]T , which
form a velocity screw:_r (t) =
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instant asJ so that _s = J _r where

J =
�

@s
@r

�
=

2

6
6
6
6
6
4

@d1
@Tx

@d1
@Ty

@d1
@Tz

@d1
@!x

@d1
@!y

@d1
@!z

@d2
@Tx

@d2
@Ty

@d2
@Tz

@d2
@!x

@d2
@!y

@d2
@!z

...
...

...
...

...
...

@dn
@Tx

@dn
@Ty

@dn
@Tz

@dn
@!x

@dn
@!y

@dn
@!z

3

7
7
7
7
7
5

(3)

which relates the motion of the (virtual) manipulator to the
variation in the features. The method used to calculate the
jacobian is described in detail below.

However, what we need to be able to correct our pose
estimation is the opposite, that is, we need to compute_r (t)
given _s(t). WhenJ is square and nonsingular, it is invertible,
and then _r = J � 1 _s. This is not generally the case, so we
have to compute a least squares solution, which is given by
_r = J + _s whereJ + is the pseudoinverse ofJ calculated as
J + = ( J T J ) � 1J T . The goal for our task is for all the edges
in our synthetic image to match edges in the real image, so
the target value for each feature is 0, and we can de�ne the
error function ase(s) = _s � 0 which leads us to the simple
proportional control law_r = � K J + _s whereK is the gain
parameter.

E. Estimation of the jacobian

To estimate the jacobian we need to calculate the partial
derivatives of the feature valuesdi with respect to each of
the components of the motion we are estimating (R c

a , t c
a and

� ). When features are the position of points or lines, it is
possible to �nd analytical solutions for the derivatives. Here,
however, the features are the distances from the edges of the
synthetic image to the closest edge in the real image, so we
approximate the derivative by calculating how a change in
the motion component affects the value of the feature.

Each of the feature valuesdi is the distance between a
point ps

i (u; v ) in the synthetic image and the corresponding
point pr

i (u; v ) in the real image. We want to �nd the point
ps

i
0(u; v ) which results from applying the small change in

the motion component tops
i (u; v ) . We can use the depth

mapD s(u; v) to �nd the corresponding 3D point in camera
coordinates, and then use the inverse of the matrix that we

used to render the point from the model to �nd the point
pm

i (x; y; z ) in the coordinate system of the model. Different
points in the image will correspond to different links in the
robot, but we can obtain the link for each point, and thus its
corresponding projection matrix from mapTs(u; v).

Once we havepm
i (x; y; z ) , we can reproject it using the

new transformation matrix which would result from applying
the small change in motion component, obtaining, as we
wanted,ps

i
0(u; v ) . We then compute the new distanced0

i
to the corresponding point in the real image, and we can
estimate the derivative as(d0

i � di )=�, where� is the change
in motion component.

IV. EXPERIMENTAL EVALUATION

We test the performance of the method with respect to the
choice of 3D features. We then give a more extensive eval-
uation of the method's performance in different situations,
demonstrating hand-eye calibration or robot pose estimation.

A. Accuracy evaluation and comparison to previous method

We �rst evaluated the accuracy in the pose estimation in
tracking two robots: A KUKA industrial arm and a NAO
humanoid robot. We performed tests both with imagery
from a simulator and with real-world data obtained from a
Kinect camera. The results, which include a comparison with
our previous method which used only 2-D information are
summarized in Table III-D. Each value is the average error
over 1000 runs. We used 5 different joint con�gurations for
each robot and 10 different initial estimates for the pose,
giving the total of 50 starting conditions. Examples of initial
and �nal position for a run are shown in Figures 3 and 4.

To evaluate the error in the real-world experiments, we
needed ground truth. We chose to compare the results to
how a human would manually align the input point cloud
with the rendered CAD model, using the same information
available to the robot. For the position error, we distinguish
between errors that are parallel or perpendicular to the image
plane, and we observe that the errors in the estimation of the
depth of the object are greatly reduced.

B. Convergence of the method

To evaluate the robustness of the method, we estimate
the maximum error in the initial pose estimation for which
the method will still converge, using the KUKA industrial
arm and real-world imagery. In this set of experiments,



Fig. 3. A few examples of the initial (upper row) and �nal poses (lower row) for a Nao robot in several different con�gurations. The blue outline
represents the current estimation of the pose. Best viewed in color.

Fig. 4. Initial poses with (a) errors in the joint positions (b) errors in the transformation for the whole manipulator. (c) Converged result. Red outline
represents the current estimation. Best viewed in color.

Fig. 5. Convergence results for (a) only rotational error (b) only translational error (c) both rotational and translational error. Best viewed in color.

we also assume that the joint con�guration is known. We
performed a total of 30000 runs of the method, using �ve
different joint con�gurations for the manipulator. The results
for different kinds of errors, including a decision boundary
for convergence can be seen in Figure 5.

We can observe that for translational errors of less than
10 cm and rotational errors of less than 10 degrees, the
method converges with high probability. Also, we can see
that translational errors along the axis perpendicular to the
image plane and rotational errors around that same axis, a



larger error is tolerated.

C. Estimation of joint con�guration

Until now, we have assumed a known joint con�guration.
While this is the case in our system, it is not true for many
robotic manipulators. In the following set of experiments, we
assume that the transformation with respect to the base of the
manipulator is known, but there is some error in the initial
estimate of the joint con�guration. Having the real values as
provided by our system allows us to compare the results of
our method with the true values.

We ran our method 10000 times for the KUKA arm
using real-world images, with 5 different target (real) joint
con�gurations, and each time introducing an error of between
-5 and 5 degrees to each of the 6 joints of our arm. A total
of 91% of the runs converged, and the average mean-square-
error over the joints for each run was 0.83 degrees.

V. CONCLUSION AND FUTURE WORK

We have proposed an approach for vision based pose
estimation of a robot hand or full body pose. The method is
based on virtual visual servoing using a CAD model of the
robot. The method combines 2-D image features with depth
features. The method can be applied to estimate either the
pose or the full con�guration of a robot. We presented exper-
imental, demonstrating the performance of the approach on
both a mobile humanoid robot and a stationary manipulator.

Our experiments show that considering three-dimensional
features which can be easily obtained from RGB-D images
signi�cantly improves performance when tracking robots,
especially with respect to the perception of the distance from
the camera to the robot. We have successfully applied the
method to the tracking of a walking humanoid, as can be
seen in the accompanying video. We also showed that the
method can be used to re�ne the estimation for the joints
of a robotic manipulator, where limitations in the hardware
introduce uncertainties.

However, when combining both errors in the transforma-
tion for the base and in the joint con�guration, the current
method is stable only for limited ranges of errors. We
need further studies on the relative bene�ts of 3D features
depending on how large these errors are. Preliminary tests
show that the 3D features used are complimentory. Whereas
SURF features are most valuable for large errors, edges are
important when errors are small. This leads to the conclusion
that a system could bene�t from varying the contribution
of different features depending on how far you are from
converging. Our plan is to continue in this direction, and
gradually increase the radius of convergence, while keeping
the same high accuracy.
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Predicting Slippage and Learning Manipulation Affordances through
Gaussian Process Regression

Francisco E. Vĩna B., Yasemin Bekiroglu, Christian Smith, Yiannis Karayiannidis, Danica Kragic

Abstract— Object grasping is commonly followed by some
form of object manipulation – either when using the grasped
object as a tool or actively changing its position in the hand
through in-hand manipulation to afford further interaction. In
this process, slippage may occur due to inappropriate contact
forces, various types of noise and/or due to the unexpected
interaction or collision with the environment.

In this paper, we study the problem of identifying continuous
bounds on the forces and torques that can be applied on a
grasped object before slippage occurs. We model the problem
as kinesthetic rather than cutaneous learning given that the
measurements originate from a wrist mounted force-torque
sensor. Given the continuous output, this regression problem
is solved using a Gaussian Process approach.

We demonstrate a dual armed humanoid robot that can
autonomously learn force and torque bounds and use these
to execute actions on objects such as sliding and pushing. We
show that the model can be used not only for the detection of
maximum allowable forces and torques but also for potentially
identifying what types of tasks, denoted asmanipulation affor-
dances, a speci�c grasp con�guration allows. The latter can then
be used to either avoid speci�c motions or as a simple step of
achieving in-hand manipulation of objects through interaction
with the environment.

I. I NTRODUCTION

Interaction with and manipulation of objects are essential
abilities of robots operating in realistic environments. As
humans, robots may need to grasp objects for simple tasks
such as moving them from one position to another. More
complex tasks, such as using objects as tools, requires a more
advanced ability of manipulating an object in the hand so
to achieve a suitable grasp con�guration. In this process of
achieving and loosing contacts with the object in the hand,
events such as slippage commonly occur. The knowledge of
contacts and slippage provides important information about
the status of the task one is executing.

For both humans and robots, sense of touch is paramount
for safe and �exible interaction with objects and the environ-
ment. As reviewed in [1], components of tactile perception
in humans depend on the sensory inputs within muscles,
tendons and joints (kinesthetic) and stimulus mediated by
receptors in the skin (cutaneous). Most of the research in
robotic tactile sensing addressed the problem of �nger-object
interactions and grasp stability assessment. If the contact
locations as well as the friction coef�cients of the contacting
surfaces are known, the problem can be formulated in terms
of the Grasp Wrench Space (GWS) [2], [3]. However, it is
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Centre for Autonomous Systems, School of Computer Science and Com-
munication, Royal Institute of Technology KTH, SE-100 44 Stockholm,
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Fig. 1 : A dual arm robot setup for estimating maximal allowable
forces and torques for a grasp.

dif�cult to construct the GWS in practice since it requires
the exact values of those parameters.

Besides planning stable grasps, the robot should also
acquire knowledge of the maximum forces and torques that
can be applied on the object before slippage occurs. Various
methods have been proposed for detecting slippage [1],
[4]–[6]. Apart from addressing the problem at the signal
processing level in terms of cutaneous tactile sensing, general
machine learning methods have proven adequate for analysis
in cases where noise and imperfect models are inherent to
the problem, [7], [8].

Our work follows the direction of using kinesthetic sensing
for slip detection in combination with machine learning
techniques. Autonomous learning and a physical model of
the friction forces are used to estimate the maximum static
friction forces and torques on objects the robot is interacting
with. We approach the problem through Gaussian Process
regression, resulting in a model that can predict forces and
torques that a grasp can tolerate before the held object starts
slipping. As such, the model can also be used to identify the
affordances of a speci�c grasp such as, for example, what
type of in-hand rotation can be applied to an object while
still keeping the object in the hand.

The learned bounds can be used as constraints at the
control level to avoid certain motions and thus prevent
slippage of the grasped object while executing the task. In
addition, the approach also identi�es in which directions the
object might translate or rotate in the hand and thus be
exploited in tool use and in-hand manipulation to actively
change the pose of the object in the hand – either through
speci�c motion or interaction with the environment. This is
also commonly done by humans, for example prior to putting
a key in a keyhole we may change its orientation between
the �ngers by pushing the key toward a surface.



Thus, differently from commonly addressedgrasp affor-
dances[9], we facilitate the system to identifymanipulation
affordances. Our method uses force-torque and propriocep-
tive feedback different from commonly used tactile or skin
sensors which in practice can be fragile and easily dam-
aged. However, when possible, the cutaneous and kinesthetic
methods can be integrated resulting in a more biologically
inspired approach [1]. Our approach also takes advantage
of the dual arm capabilities of humanoid robots since the
training actions can be executed autonomously through dual
arm manipulation procedures. Fig. 1 shows our dual-arm
robot as an example of a platform that can be used to
implement the method we propose in this paper.

The paper is organized as follows: Section II presents the
related work, Section III our learning framework, including
the friction model and the use of Gaussian Process regression
while in Section IV we proceed to describe how our system
learns manipulation affordances from doing regression on the
static friction. Finally, we provide our experimental results
in Section V as well as the conclusions, discussion on the
results and future directions in Section VI.

II. RELATED WORK

Early works studying the physics of robotic grasping
and contact between rigid bodies are reviewed in [3]. The
review addressed the basic closure properties of grasps, force
and form closure, which describe the equilibrium condi-
tions of an object grasped by a robotic hand by assuming
frictional and frictionless point contacts respectively. Given
that friction forces play a central role in robotic grasping,
some of the works reported in the literature have focused
on studying their properties [5], [10]. These studies cover
not only the translational Coulomb friction, but also the
rotational friction. Moreover, by combining different sensor
modalities (tactile and force-torque) it is shown in [5] that
it is possible to detect and control both translational and
rotational slippage.

Besides modeling the physics of grasping and the friction
forces, quantifying the quality of grasps in terms of the
capability to counteract external disturbances has been one
of the main research questions in the grasping community.
In order to plan stable grasps with robotic hands, many grasp
planners have been proposed in the literature which optimize
these quality measures [2], [11], [12]. These planners are
constructed in terms of approximations of wrench spaces or
heuristic algorithms that consider a subset of a wrench space.

The main drawback of these methods is that these require
precise 3D models of the object as well as prior knowledge of
the friction coef�cient and the location of the contact points
of the robot's hand. To cope with this problem, [13] proposes
a set of manipulation actions to estimate properties such
as weight, stiffness and friction in order to set appropriate
grasping forces.

In order to overcome the uncertainties and problems with
modeling errors in grasping, learning approaches have also
been proposed. Example works of [7], [8], [14] consider

learning of grasp stability and grasp affordances. Our pre-
vious work on grasp stability assessment performs learning
mainly through tactile (cutaneous), proprioceptive and visual
feedback in order to predict the stability of the grasp prior
to lifting and manipulating the object [8], [14]. In [7] the
proposed system learns grasp affordances which are de�ned
as hand-object relative poses that lead to successful grasps
on a particular object. These affordance densities are learned
through exploration and visual features. The main strength
of these learning approaches originates from the fact that
these do not require prior knowledge of physical contact
parameters as the system is trained using supervised learning
without explicitly modeling the physics of grasping.
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Fig. 2 : Cutaneous and kinesthetic components of haptic sensing
and perception [1], [15]. Highlighted in bold are the kinesthetic
components which we consider in our approach.

Our work makes use of the physics models of friction
described in the seminal work of [5], [10]. However, instead
of employing geometrical, analytical or signal processing
based approaches [2], [4], [5], [11], [12] we follow a
kinesthetic learning approach for predicting slippage. In this
sense, our work follows more closely approaches in which
the robot �rst interacts with objects and assesses their contact
and friction properties prior to executing tasks [13]. Our
method also follows the motivation behind learning based
approaches in order to deal with the issue of modeling errors
and uncertainties in grasping [7], [8], [14].

Within the broader scope ofhapticsensing, which consists
of both cutaneous and kinesthetic sensing as shown in Fig. 2,
our approach falls under the subcategory of kinesthetic sens-
ing and perception while most of the related work discussed
so far including our own work on grasp stability assessment
cover mostly the domain of cutaneous/tactile sensing [4], [6],
[8], [14].

III. PHYSICS AND LEARNING MODEL

The main objective of our system is learning the maximum
static friction forces and torques for various grasp con�gura-
tions through force-torque sensing. In this section we present



the modeling aspects of our framework, beginning with a
description of the friction model used and the selection of
input features for training. We �nalize the section with a
brief overview of Gaussian Process regression and explain
how we apply it within our work.

A. Friction Model

According to the Coulomb friction model, when an exter-
nal force is applied parallel to the surface of contact between
two bodies, there is a reaction friction forcef f which relates
to the normal forcef n according to the following inequality

f f � � sf n (1)

where � s is the static coef�cient of friction. This equation
holds until the external force exceeds the maximum static
friction force. The object then starts slippping when Eq. (1)
becomes an equality. From this point, a dynamic friction
force with a lower friction coef�cient starts acting on the
object as depicted in Fig. 3. The peak of this curve corre-
sponds to the maximum static friction forcef slip given by

f slip = � sf n (2)

The static torsional friction typically displays a nonlinear
behavior given by

� slip = � sf 4=3
n (3)

where� s depends on geometric and elasticity factors of the
contact [5]. However, slippage still occurs at the point in
which the friction torque reaches its maximum value, which
we denote as� slip .
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Fig. 3 : Translational friction force exerted on an object held in
a robot hand. The peak of the signal,f slip denotes the maximum
static friction force at which the object begins to slip.

In order to achieve a more general physical model for
prediction, we take into consideration the effect of both
rotational and translational friction forces as discussed in
[5], [16]. When an object is subject to both rotational and
translational shears, the translational and rotational friction
components become correlated as shown in Fig. 4. The curve
f t = h(� n ), wheref t is the component of the force tangent
to the contacting surfaces and� n the component of the torque
in the normal direction, represents the boundary at which the

object starts slipping due to the loads exerted on the object.
If the tangential forcef t applied on the object is above the
curve for a given applied torque� n , then the object will slip
and the grasp is thus unstable.
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Fig. 4 : Slippage boundaries:f t = h(� n ) represents the boundary
for slippage of objects under combined translational and rotational
shear whilef t = hlin (� n ) represents a linear approximation ofh
as proposed in [5].

A number of mathematical approximations have been for-
mulated in the literature to describe this slippage boundary.
We will use the linear approximation described in [5] that
de�nes a conservative bound on the magnitude of the forces
and torques that cause slippage on an object. This linear
bound is denoted byf t (� n ) = hlin (� n ) in Fig. 4 and can be
expressed using the following equation:

f t

� s
+

� n

� s
= f n (4)

B. Learning Framework

Our goal is to learn the mapping between a set of
input features (X ) and the resulting maximum friction
forces and torques (Y ), which is a regression problem
due to the continuous outputs. While there are several
types of regression techniques that could be used within
our framework, we have chosen Gaussian Process (GP)
regression which can capture the nonlinearity in the data
and provide estimates for uncertainty in the predictions.

1) Gaussian Processes:Given a datasetD = f x i ; yi gn
i =1

with n observations wherex i 2 < N and yi 2 < is a scalar
output, regression analysis aims at learning a model for the
relationshipy = f (x) + " which is composed of a latent
function of the input and a noise component" . As a result
of this learning, given a new inputx � , the aim is to obtain
the predictive distribution fory� .

A GP [17] de�nes a distribution over functions and is
parametrized by a mean and a covariance function as

GP � (m(x); k(x; x0)) (5)

The mean function is assumed to be zero. The covariance
function expresses how similar two outputs,f (x i ) andf (x j )



are given the inputsx i and x j . Our covariance function is
based on the squared exponential, which is given by

k(x i ; x j ) = � 2
f exp[�

(x i � x j )2

2l2 ] + � 2
n � (x i ; x j ): (6)

The hyperparameters of the covariance function,(� f ; � n ; l ),
are optimized based onD, where � f denotes the signal
variance,� n is for the noise variance andl is the length-
scale which determines how relevant an input is, i.e., ifl
has a large value the covariance will be independent of that
input.

We are interested in the conditional probability
p(y� jD ; x � ) as we want to �nd how likely is a certain
prediction fory� , given the data and the new input. Based
on a trained GP model, the estimate fory� is given by the
mean value at the test point with the con�dence being the
variance. The interested reader can refer to the literature
[17] for additional details on Gaussian Processes.

2) Feature Selection:As an input to the regressor, we
need a set of informative featuresX , that can reliably
represent the behavior of the maximum static friction forces
and torques. In our case, we have selected thex component
of the handH pose with respect to the objectO as shown
in Fig. 5

X =
�

O xH
�

(7)

We have selected this feature for illustration purposes, yet
more features can easily be incorporated into the system,
such as for example the joint angles of the �ngers and their
grasping force which can modify the friction forces present
in a grasp. If more features are incorporated into the system,
a preprocessing stage with dimensionality reduction would
be necessary [18].

Fig. 5 : Grasp preshape used for training on the maximum static
friction forces and torques, with the corresponding reference frames
of the hand and the object used for training.

The outputsY of the regression system are the maximum
static friction force and torque

Y =
�

f slip

� slip

�
(8)

which can be measured through force-torque sensors by
interacting with the object. We isolate the components of
Y and train two GPs, one for the translational frictionf slip

and one for the rotational friction� slip . In our case, we learn

friction forcesf slip in theyH � zH plane and friction torques
� slip around thexH axis of the tip of the hand reference
frame as shown in Fig. 5, given that these are the directions
in which the object can move within the hand. Forces and
torques around the remaining axes are trivial to learn since
they will be constrained by the operational safety limits of
the hand, given the geometry of the grasp.

IV. TOWARDS LEARNING MANIPULATION

AFFORDANCES

Once the robot has interacted with an object and learned
the maximum friction forcesY = [ f slip ; � slip ]T for a range
of grasp con�gurations, it can use this information to infer
what type of motions the object can withstand given the
current grasp. The details of the training data generation for
learning are provided in the next section.

For a given wrenchw � measured by the robot while
executing a task, the robot can detect how close the object is
to slipping according to the model discussed in Section III-
A. In order for the object to remain �xed in the robot's hand
the measured force should lie below the torque dependent
slippage boundaryh(� )

f �
t < h (� �

n ) (9)

wheref �
t and� �

n are the tangential force and normal torque
components of the wrench measured by the robot.

In the training stage we isolate the translational and
rotational components of the friction and thus we can approx-
imateh(� n ) linearly with hlin (� n ) by joining the end points
(f t ; � n ) = ( f slip ; 0) and (f t ; � n ) = (0 ; � slip ). In the case
of a linear approximation the following condition ensures a
stable grasp in terms of zero relative motion between the
object and the handH vO = 0:

f �
t < h lin (� �

n )

f �
t < � f slip

� slip
� �

n + f slip

(10)

Thus, our approach makes it possible to identify stable
grasps through identi�cation of forces and torques that can
be applied on an object before slippage occurs. In a broader
sense, the methodology also identi�es directions of motion
constraints – that is, in which directions the object is more
likely to translate or rotate.

In the case of the grasp studied in this work, see Fig. 5,
the model would inform that the object can translate in the
yH � zH plane and rotate around thexH axis. Moreover, if
a large torque is detected around thexH axis with relatively
low forces in theyH � zH plane then we can expect the object
to rotate around the �ngertips rather than translate once the
force-torque measurements reach the slippage boundary of
Eq. (4).

This knowledge is necessary for manipulation tasks where
a predicted slippage of the object may be facilitated to
complete a task. An example scenario is shown in Fig. 6,
in which the robot exploits the rotational slippage to pour
the contents of the cereal box into the bowl by letting the
box rest against an edge of the bowl and allowing it to rotate
slightly in the hand while the manipulator moves upwards.



Fig. 6 : Example scenario of a pouring task with rotational slippage.
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Fig. 7 : Sliding action for training on the maximum static linear frictionf slip and its corresponding force and torque pro�les.

V. EXPERIMENTAL EVALUATION

Our experimental setup consists of a dual arm robot as
shown in Fig. 1. Each manipulator has 7 DOF and these
are equipped with ATI Mini45 6-DOF force/torque sensors
mounted at the wrists and they are sampled at a 650 Hz
frequency. We start by describing the training data collection
process.

A. Training Data Collection

For collecting training data autonomously with the robot
we use three dual arm manipulation procedures: one sliding
action for measuring the maximum static linear frictionf slip

and the other two are a rotational motion and pushing action
for measuring the rotational friction� slip .

Fig. 7 shows an illustration of the sliding action along
with the forces and torques measured during the execution.
In this case the robot holds the object �rmly with the parallel
gripper shown on the right while the hand on the left, which
is the one we train for, slides up in theyH direction of the
hand. The y-component of the force signalf y measured in
the force-torque sensor of the arm is then similar to the one
shown in Fig. 3, andf slip is obtained from the peak of the
signal.

For obtaining training data for the maximum static friction
torque� slip , we used the pushing action shown in Fig. 8. This
action is performed by grasping the object with the hand we
train for, while the parallel gripper shown on the right pushes

the object on a corner so that the object rotates around the
xH axis of the tip of the robotic hand. We selected this action
given that we expect collisions with the environment to be a
source of rotational slippage when the robot performs tasks
with the object.

For veri�cation purposes we also trained a separate GP
for � slip by applying a different type of training action as
shown in Fig. 9. This training action consists of performing
a rotational motion with the grasping hand while the object
is kept on a �xed grasp with the parallel gripper shown on
the right. Even though in this case we also train for� slip as
with the pushing action, we can expect different outcomes
from the learning given that each training action represents
a different kind of interaction with the environment. The
pushing action gives� slip for tasks in which the object
is grasped by the robot's hand and it collides with the
environment while being grasped by the robot hand, whereas
the rotational motion models a task in which the object is
�xed with respect to the environment and the robot's hand
rotates around the object.

B. Experimental results

We collected 14 training examples for the friction force
and 10 training examples for the torque by varying the rela-
tive pose between the robot hand and the manipulated object
along one dimension as described in Section V-A. To learn
the Gaussian Processes and obtain the hyperparameters we



� x
Fig. 8 : Pushing action for training on the maximum static rotational friction� slip .

� x

Fig. 9 : Rotational motion for training on the maximum static rotational friction� slip .

used Rasmussen and Nickisch's Gaussian Process Regression
and Classi�cation Toolbox [17]. The hyperparameters were
calculated by maximizing a Gaussian likelihood function.

Fig. 10 shows the resulting learned Gaussian Process for
f slip . This plot shows the mean function of the learned GP
(solid blue line) which follows the training points, along
with the two standard deviation con�dence bounds (dashed
red lines) enveloping it. Given this result, we take the lower
con�dence bound as stability boundary forf slip given that
the Gaussian Process predicts that 95% of the points of the
process will lie above this boundary.
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Fig. 10 : Learned GP off slip with two-standard deviation
con�dence bounds. The solid blue line is the mean function of
the GP while the dashed red lines are the con�dence bounds. The
green square markers correspond to the training data, while the
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For testing and validating the learned GP, we manually
pushed the object while it was being grasped by the robot
in different con�gurations compared to the ones used for
training. Fig. 10 con�rms that the sliding action performed
on the object is valid for trainingf slip as most of the test
points lie above the lower con�dence bound of the Gaussian
Process.
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Fig. 11 : Learned GP of� slip trained by using the pushing action
shown in Fig. 8.

Fig. 11 shows the learned Gaussian Process for� slip when
using the pushing action. Once again, we manually pushed
the object while it was grasped by the robot in order to collect
the test points shown in the �gure. These test points show
that the pushing action and the learned Gaussian Process
succeeded in capturing the behavior of� slip with respect to
the object to hand relative pose.

Fig. 12 shows the result of learning� slip by using the
rotational motion, while we collected test points by manually
pushing the object as in the previous case. The clear offset
between the learned GP and the test points shows that
the training and testing actions are not anymore physically
consistent. In the case of the rotational training motion, the
interaction between the active robot hand and the object
involves both forces and torques, while pushing actions,
performed either by the robot hand or manually by ourselves
for testing, exert only forces on the object. This result can
thus be used to inform the system that the action is not
proceeding according to the model and provide the basis
for replanning. This is something we plan to adress in the
subsequent work.
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Fig. 12 : Learned GP of� slip with two-standard deviation
con�dence bounds trained with the rotational motion shown in Fig.
9.

VI. CONCLUSIONS ANDFUTURE WORK

In this work we have presented a learning framework
for prediction of slippage of grasps through kinesthetic
perception which provides a basis for learning manipulation
affordances. Our method uses Gaussian Process regression
and the training is performed by isolating the translational
and rotational components of the friction. The novelty of the
approach lies on using a machine learning approach together
with a physical model of the friction to determine continuous
bounds on the forces and torques that a grasped object can
withstand before slipping for a set of different object-hand
relative poses. The experimental results show that our system
is able to generate reliable predictions which agree with tests
performed by manually pushing the object in the hand of the
robot for previously unencountered grasp con�gurations.

Future directions of work include expanding our sensor
modalities from kinesthetic perception to cover a wider
spectrum of haptic perception (see Fig. 2) by use of tactile
sensing. We also aim to incorporate into our system the
estimation of the axis of rotation of the object in the hand
of the robot as it can improve the results shown here.
We have assumed a constant axis of rotation around the
�ngertips of the hand that might not correspond precisely
with the actual axis around which the object rotates when it is
manipulated. In order to cope with this issue, we aim to use
adaptive control techniques previously used for estimating
the kinematic constraints of hinged doors [19] and treat the
object as a virtual hinge. We are also interested in coupling
this work with probabilistic grasp assessment techniques and
object categorization as demonstrated in our previous work
in [20], [21].
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A Probabilistic Framework for Task-Oriented
Grasp Stability Assessment

Yasemin Bekiroglu, Dan Song, Lu Wang and Danica Kragic

Abstract— We present a probabilistic framework for grasp
modeling and stability assessment. The framework facilitates
assessment of grasp success in a goal-oriented way, taking into
account both geometric constraints for task affordances and
stability requirements speci�c for a task. We integrate high-
level task information introduced by a teacher in a supervised
setting with low-level stability requirements acquired through
a robot's self-exploration. The conditional relations between
tasks and multiple sensory streams (vision, proprioception and
tactile) are modeled using Bayesian networks. The generative
modeling approach both allows prediction of grasp success,
and provides insights into dependencies between variables and
features relevant for object grasping.

I. I NTRODUCTION

A lot of current work in robotics is inspired by human
goal-directed behavior [1]. In humans, goal-directedness is
obtained through multiple development stages, both through
the sensorimotorexploration(trial and error) and through the
observationof others interacting with the world (imitation
learning) [2]. The former is addressing the problem of
learning through self-experience in order to associate the
sensorimotor signals to the direct motor effects. The latter
involves human supervision, which is especially bene�cial
for ef�cient learning of complex tasks. Robotic approaches
often focus on just one of these two aspects. Linking between
the two is often through manual encoding [3] or applied to
simple tasks [4], [5], [2], [6]. The main challenges originate
from the differences in commonly adopted representations
[7].

The gap between the representations is especially visible
when dealing with robot grasping tasks. For example, if
a robot is given a high-level task command, e.g.,pour
me a cup of coffee, it needs to make decision on which
object to use, how the hand should be placed around the
object, and how much gripping force should be applied so
that the subsequent manipulation is stable. Several sensory
streams (vision, proprioception and tactile) are relevant for
manipulation. The problem domain and hence the state space
becomes high-dimensional involving both continuous and
discrete variables with complex relations. Traditional dy-
namic systems approaches in robotics e.g., [8] focus mainly
on optimal planning and control of hand trajectories, hence
the state space only includes kinematic parameters of the
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arm and the hand. The relations between many grasping-
relevant variables mentioned above can not be addressed
simultaneously.

Probabilistic frameworks based on graphical models have
proved to be powerful in various �elds with high-dimensional
complex problem domains [4], [9], [10], [6]. Graphical
models encode the relations between variables through their
probabilistic conditional distributions. Such distributions do
not require the variables to have the same underlying rep-
resentations. Therefore, high-level symbolic variables such
as task goals can be naturally linked to the low-level senso-
rimotor variables such as hand con�guration. Furthermore,
the model can be combined with the probabilistic decision
making where grasp plan and control can be performed
through inference even with noisy and partial observations
[11].

Some recent work in the area [12] exploited these strengths
and linked the grasp plan to the manipulation tasks through
Bayesian networks (BNs). The work emphasized the geo-
metric constraint of a task for planning grasps based on
simulated vision inputs. Tasks, however, also require various
manipulations:pouring needs rotating a bottle that contains
liquid, andhand-overneeds only parallel transportation. The
stability demand therefore differs due to different manipula-
tions requested by tasks.

In this paper, we integrate this task-dependency with sta-
bility assessment. A method combining self-exploration and
supervision is implemented, where self-exploration enables
the robot to learn about its own sensorimotor ability (how to
grasp an object to stably lift and manipulate it), while human
tutoring helps the robot to associate its sensorimotor ability
to high-level goals. In particular, we use a probabilistic model
to integrate the semantically expressed goal of a task with a
set of continuous features. We present an extensive evaluation
of the proposed approach on a real robot platform equipped
with multiple sensory modalities (vision, proprioception and
tactile). The results show that the proposed model accurately
estimates grasp success both at the stage of planning (before
execution in real environments) and during grasp execution.

II. RELATED WORK

Planning and executing a grasp that is robust and stable is
an important topic in grasp research (see [13] for a recent re-
view). The quality measures of stability are mostly based on
force-closureof a grasp wrench space. A force-closure grasp
means that any disturbing external forces can be balanced by
the forces applied at the contacts. However these approaches
assume perfect knowledge of the contacts between the hand



and the object, which is usually an unrealistic demand on
real setups. On the other hand, experience based approaches
where the robot learns good grasping con�gurations through
real execution [14], [15], [16] have proved to be successful.

But a good grasp should not only be stable, it also needs
to be suitable for the task, i.e.,what do you want to do after
you lift the object. Very few work has put effort on planning
grasps in a goal-directed manner. Xue et al. [3] manually
encoded the expertise about task semantics provided by a
human tutor. A recent work [12] used Bayesian networks to
learn the grasping task constraints that depends on a set of
geometric attributes from both objects and grasps (e.g., hand
positions). However manipulation tasks do not just concern
geometric constraints. Apouring task not only requires the
bottle opening to be unblocked, but also needs the grasp to
be stable enough to rotate the bottle. We need to link task
information with stability in real world scenarios.

A natural extension is to combine supervised task learning
with experience-based stability learning. This allows stability
to be assessed in a task-oriented manner. This is especially
bene�cial for energy-ef�cient control: when a task (e.g.,
hand-over) does not require strong grasping for dif�cult
manipulations (e.g., waving for thehammering task), a
relatively smaller gripping force can be applied. Combining
task with stability was rarely studied. Some work [17], [18]
de�ned task-related grasp quality measures which combined
task knowledge with analytical stability measures used in
traditional grasp stability studies. Such approaches therefore
also suffer from partial and uncertain knowledge of the world
in real setups.

Probabilistic learning is a powerful paradigm for modeling
and reasoning about the noisy and uncertain real world data
[4], [9], [10], [6]. For robot grasping, planning and control
rely heavily on vision sensing with typically noisy and
incomplete observations. Probabilistic approaches combining
vision and tactile sensing [19] provided an on-line estimate
of belief states which were used to plan the next action.
Toussaint et al. [4] proposed a coherent control, trajectory
optimization, and action planning architecture by applying
the inference-based methods across all levels of representa-
tion. Montesano et al. [6] used Bayesian networks to learn
object affordances, and applied them to goal-directed motion
planning.

However, to our knowledge, no one has proposed a
model that addresses both task-oriented grasp planning and
stability-oriented grasp execution in real environments. In
this paper we close the learn-plan-execute loop where the
robot learns task knowledge from human teaching, and
grounds this knowledge in low-level sensorimotor systems
through self-exploration (manipulating the object) in a real
environment. We use Bayesian networks to model condi-
tional relations between task and stability knowledge with
a multitude of features from vision (simulated in this work),
proprioception, and tactile sensing. The generative modeling
approach provides a �exible framework to guide detailed
grasp planning and execution in a task-directed way.

III. M ODELS

We useX to denote a set of features relevant for grasp-
ing tasksT. X originates from three groups of features,
f O; A; H g, where O denotes an object feature set (from
visual sensing),A denotes an action feature set that rep-
resents gripper con�gurations (from proprioception) andH
denotes a haptic (or tactile) feature set. Detailed feature
descriptions can be found in Section IV-B. We propose to
use a generative approach, the Bayesian network [20], to
model this grasp space. The goal is to apply the model for
both task classi�cationP(TjX ) and inferring the distribution
of one variable conditioned on a task and other variables
P(X i jT; X j ). P(T jX ) predicts how likely a grasp will suc-
ceed for a task, andP(X i jT; X j ) conveys domain knowledge
such as the expected value of a tactile feature given a task and
an object. To evaluate BN's classi�cation performance, we
compare it with a discriminative approach, Kernel Logistic
Regression (KLR). In this section, we provide an overview
of the two modeling approaches.

A. Kernel Logistic Regression

Kernel Logistic Regression is a nonlinear probabilistic
classi�cation model. Given a class variable (in this paper,
the taskT) and the input feature set (in this paperX j
f O; A; H g as seen in Tab. I), KLR models the probability
of the class variableP(TjX ) through a weighted sum of the
similarities (kernelsK) between a testing pointx and each
training pointx i [21]:

p(t jx ; w) =
1

1 + exp f�
P n

i =1 wi K(x; x i )g
(1)

In this paper we chooseK to be a Gaussian kernel. Training
a KLR model is to �nd the weight vectorw that maximizes
the regularized probability of the data

�
nX

i =1

logp(yi jx i ; wi ) + � trace(wKw T ) (2)

whereK is the kernel Gram matrix, withK ij = K(x i ; x j ),
and � is the regularization constant. During training, the
kernel bandwidth parameters and� are chosen by cross-
validation.

B. Bayesian Network

A Bayesian network [20] is a probabilistic graphical model
that encodes the joint distribution of a set of random variables
V = f V1; V2; : : : ; Vm g. Each node in the network represents
one variable, and the directed arcs represent conditional in-
dependencies. Given a structure of the networkS and a set
of local conditional probability distributions (CPDs) of each
variableVi , the joint distribution of all the variables can be
decomposed as

p(v ) = p(v j� ; S) =
mY

i =1

p(v i jpa i ; � i ; S) ; (3)

wherepa i denotes the parents of nodeVi , and the parameter
vector � = ( � 1; :::; � m ) speci�es the CPDs. Learning a



BN includes discovering from a dataset:1) how one vari-
able depends on others (� ), and 2) what the conditional
in-dependencies between different variables are (S). The
former is an instance of parameter learning and the latter of
structure learning. Various algorithms and techniques have
been developed to learn a BN in different model and data
conditions (see [22] for a review).

In this paper, we use the Bayesian network to model the
joint distribution of a set of task and stability-relevant vari-
ables (see Tab. I), i.e.,V = f T; X g whereX j f O; A; H g.
To correctly describe a grasping task, both conceptual high-
level information and continuous low-level sensorimotor
variables are required. The variables in this work are both
discrete (e.g.,task; obcl), and continuous (mostO; A; H
features). The continuous features such as hand grasp con�g-
uration can be high-dimensional with complex probabilistic
distributions.

Learning BN structures from both continuous and discrete
data is an open problem, particularly when continuous data
is high-dimensional and sampled from complex distributions.
Most algorithms for structure learning only work with dis-
crete variables. Therefore, a common approach is to convert
the mixed modeling scenario into a completely discrete one
by discretizing the continuous variables [23]. In this paper we
use a two-step discretization scheme. For a high-dimensional
continuous variableX , the data in original observation space
is �rst projected to a low-dimensional space, and then a
parametric mixture model (multi-variate Gaussian mixture)
is learned to model the data density in this space,

p(x) /
MX

k=1

� k N (xjuk ; � � 1
k ): (4)

where uk and � k are the mean and covariance of each
Gaussian component, and� k is the mixing proportion. The
parameters of the mixture model are learned using the
standard EM approach. The number of the clusters for each
variable is found through cross-validation where the task
classi�cation performance with the BN is maximized.

We use a greedy search algorithm to �nd the network
structure (the directed acyclic graph, or DAG) in a neighbor-
hood of graphs that maximizes the network score (Bayesian
information criterion [24]). The search is local and in the
space of DAGs, so the effectiveness of the algorithm relies
on the initial DAG. As suggested by Leray and Francois
[25], we use another simpler algorithm, the maximum weight
spanning tree [26], to �nd an oriented tree structure as the
initial DAG.

C. Inference in Bayesian Networks

A trained network de�nes the factorization of the joint
distribution of the observations,p(V ) = p(T; O; A; H ),
in terms of a graph of conditional dependencies. We can
now compute the posterior distribution of one or group
of variables given the observation of others. A common
way for doing this is to apply the junction tree algorithm
[27]: an algorithm of local message passing to compute
the distribution of the variables of interest. The output of

the network is a multinomial distribution over each of the
discrete states of the network,

p(v i ! u ik j� i = U j ): (5)

stating as “the probability of variableVi is at its discrete
stateu ik when a set of other variables� i is observed to be
at the stateU j ”.

D. Generative Model

A Bayesian network is a generative model where not
only the class probabilitiesp(T jX ) can be inferred as KLR,
but also the class conditional distributions can be predicted
p(X jT). The former means we can use a BN to predict
success of a grasp to achieve a task given observed object
and action features by inferring the posterior distribution
p(T jO; A), i.e., to classifyT. The latter means that we can
also �nd, given an assigned task, the posterior distribution
of the objectp(OjT) and/or grasp featuresp(AjT; O). This
provides the basis for the robot to select objects that afford a
given task, e.g.,something to drink from, and plan an optimal
grasp strategy using the object to ful�ll the task requirements.

In addition, Bayesian networks allow us to infer the do-
main knowledge through data. The network structure depicts
an in�uence diagram illustrating the conditional relations
between different variables. Also the class conditional on
feature variables provides an intuitive evaluation of task and
stability-related requirements.

Another strength of the BN is its ability to infer the
grasp success with partial observation. In a task-based grasp
adaptation scenario (see Fig. 7), this is especially important
because we can predict the grasp success given observation
on only object features and grasp parameters planned in a
simulation environment. Grasp replanning therefore can be
initiated without having to execute an unstable grasp using
real robot platforms. Though this can also be done using
discriminative models, each observation condition requires
training of a separate model.

IV. M ODELING SENSORDATA AND DATA ACQUISITION

We will �rst describe the data acquisition process which
uses both a grasp simulation environment and a real robot
platform. We then present a detailed description of the
sensory data representation.

A. Data Acquisition

The goal of the data acquisition is to obtain a set of data
that instantiate the variables inf O; A; H; T g. We use a 7-dof
Schunk dextrous hand equipped with tactile array sensors.
The hand is attached to a 6-dof Kuka arm that is mounted
on a robust shelf. Seven home-environment objects including
three bottles and four mugs are used for the data generation.
In GraspIt! [28] a Schunk hand model is used for planning
grasps on the corresponding object models and extracting
features. The seven object models that capture similar sizes
and shapes of the real objects can be seen in Fig. 3.

Fig. 1 shows the schematic of the data generation process.
To extract the features in Tab. I, we �rst generate grasp
hypotheses using the grasp-planner BADGr [29]. Each grasp
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Fig. 3. Data Collection: The left panel shows grasp examples generated
on the two classes of objects (mugs and bottles). The right panel shows all
the objects.

TABLE I

FEATURE SET WITH DIMENSIONALITY D (LOW/HIGH) AND THE

NUMBER OF DISCRETE STATESM (OPTIMIZED FOR EACH OF THE THREE

TASKS [HAND-OVER, POURING, DISHWASHING] AND SHOWN FOR THE

SELECTED FEATURES). T , O, A 1;2;3 ARE FROM THE SIMULATION, A 4

AND H ARE FROM THE REAL ROBOT.

Name D M Description
T task 2 Binary task identi�er
O1 obcl 2 Object class
O2 size 3 Object dimensions
O3 cvex 1 [5, 5, –] Convexity value[0; 1]
A 1 dir 4 Quaternion hand orientation
A 2 npos 3 16 Unit grasping position
A 3 rad 1 [15, 14, 14] Radius ofnpos
A 4 fcon 2/7 [7, 7, 7] Final hand con�guration
H 1 iG 5/30 2D pressure distribution
H 2 iC 3/12 [11, –, –] 2D pressure centroid
H 3 pG 3/9 3D pressure distribution
H 4 pC 3 3D pressure centroid
H 5 aNV 2/3 [–, 5, 5] Average normal vector

separately for each task and task-speci�c BNs with binary
task variables are built.

1) Dimensionality Reduction:There are many techniques
for dimension reduction [30]. Ideally a cross-validation pro-
cess should be used to select optimal technique and their pa-
rameters. However, we have many steps for model selection,
a full-scale model selection will be expensive. Considering
the main focus of the paper is not to evaluate dimension re-
duction techniques, we decide to select a single method. We
choose Kernel PCA [31] because of its capability to model
non-linear manifolds which is a character of our problem
domain. Tab. I shows the resulting dimensionality together
with the original dimensionality on a set of variables.

2) Variable Selection:We use the HITON algorithm [32]
to perform the optimal variable selection for the three tasks.
HITON works by �rst inducing the Markov Blanket of the
target variable to be classi�ed. In this paper the target is the
binary task variableT, and its Markov Blanket is denoted
by MB (T). Then support vector machine is used to further
remove the unnecessary variables in theMB (T) in a greedy
hill-climbing fashion. The performance metric is the task
classi�cation rate. Exhaustive search through all subsets of
features returned inMB (T) is prohibitive, so we adopt a set
of heuristics to form a smaller search space: 1) the subset
must includeobcl and npos because we are interested in
inferring the conditionals involving these variables, 2) there
must be at most two features in each of theO, A and H

feature sets. We adopt a stopping point at a95% threshold
of classi�cation accuracy. The subset of features with the
highest score discovered up to this point is selected as the
satisfactory set of features. Fig. 4 shows which variables have
been selected for each of the three tasks.

3) Optimizing Data Discretization:This is a step for only
Bayesian networks. The structure learning requires discrete
data. However, this leads to loss of information. When the
resolution is low (i.e., a few discrete states), the variance in
the original continuous domain that is discriminative may be
smoothed out. On the other hand, for the variables that are
not discriminative, a high resolution will jeopardize the clas-
si�cation performance due to the curse of dimensionality. We
therefore want to �nd an optimal granularityM in Eq. (4)),
on a small set of variables (f cvex; rad; fcon; iC; aNV g).
The optimal granularity maximizes the task classi�cation
performance with the BNs. Tab. I shows the resulting number
of discrete statesM for each of the three tasks.

VI. M ODEL EVALUATION

We evaluate the Bayesian network-based modeling frame-
work in two aspects: classi�cation performance, and how we
can use the generative model for understanding the problem
domain.

For classi�cation performance, we compare the BN mod-
eling with the discriminative approach KLR under two ob-
servation conditions: the partial observation when only simu-
lated object and action variables are observed (T jO; A1;2;3),
and the full observation when haptic information andA4 are
also available after grasp execution in the real environment
(T jO; A; H ). We perform this over50 trials with 20% hold-
out splits.

Under these conditions,50 trials of cross-validation with
20% hold-out splits are performed. In each trial, for each
task three models are trained: 1)KLR (O; A; H ) with all
the selected variables, 2)KLR (O; A1;2;3) with only simu-
lated variables, and 3)BN (O; A; H ) with all the selected
variables. We do not need to train BN with only simulated
variables (BN (O; A1;2;3)) because the task probability can
be inferred in BNs with partial observations. When train-
ing KLR models, we use the continuous low-dimensional
representation. And when training BNs, we use the optimal
discrete data. In each trial, both structure and parameters of
the BNs are learned. Since each trial uses different set of
training data, the resulting structure can be different.

For each task, the inference results on two variables are
shown:npos and one of the selected H features for the task.
We chose one tactile-related feature to show that the BN can
be used to produce an expectation over sensor data given
task constraints. For each variable, we evenly sample a set of
pointsx in the low-dimensional space for easy visualization.
For each sampled point, a conditional likelihood is obtained
given the three tasks and the object classp(x jtask; obcl) to
generate thelikelihood mapsseen in Figure 6.

A. Network Structures

Fig. 4 shows the Bayesian network structures (DAGs) with
the highest task classi�cation performance for the three tasks.
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Fig. 4. The structure of BNs with the highest classi�cation performances:
DAGs of the three BNs each of which models one binary classi�cation
of one task. Square nodes represent discrete variables and circled nodes
continuous ones. The differences in variable selection among the three
tasks are highlighted by thick border of the nodes.

The represented nodes in each network are the variables
selected using the HITON algorithm [32]. The differences
in selected variables between different tasks are highlighted
by the thick-bordered nodes.

Considering haptic featuresH , hand-overtask selectsiC ,
whereaspouringanddishwashingtasks both selectaNV . iC
is a feature characterizing the local pressure centroid of each
tactile sensor pad on the �ngers, whereasaNV summarizes
the overall pressure distribution considering all the sensors
and also the �nger con�gurations. In other words,aNV
encompasses stronger information that may be relevant to
stability especially when the task demands stronger grasping
such aspouring or dishwashing.

As to the network structure, all the three tasks have direct
conditional relations withnpos and rad. This is natural
since the position of the hand relative to the object is an
important factor in�uencing both the affordance of a task
(from which direction to approach the objectnpos), and its
stability requirements (how far away the hand is from the
object center of massrad). For dishwashingT is directly
connected toaNV , whereas forpouring T in�uence aNV
throughnpos. This may be due to thatdishwashingrequires
a manipulation with180� rotation, which, compared to90�

rotation for pouring, is more demanding in terms of grasp
stability. So the task success fordishwashingdepends on
aNV even if thenpos is also observed.

B. Classi�cation

The area (AUC) under the ROC curve is used as the
performance metric. The ROCs are derived by threshold-
ing the classi�er outputs, the probability of task success
p(T = truejX ). Figure 5 shows the ROC curves for task
classi�cation results averaged over 50 trials. Table II shows
the mean and the standard deviation of the AUCs.

In general, the BNs with both full and partial observations
have good classi�cation performances for all the three tasks.
Under full observation, KLR models perform better than
BNs. However, we note that when the real sensor data (H
and A4) are not observed, KLR's performance drops a lot
compared to BNs. To con�rm this, we conduct a two-sample
t-test on the AUC scores over 50 trials of the experiment.
The hypothesis is: “The classi�cation performance with full
observation is0:07 higher than the performance with partial
observation”, briefed as “full 4 0:07 > partial”. The results

Hand-over Pouring Dishwashing

Fig. 5. Classi�cation: The average ROC curves for three tasks. Red is
KLR with full observation (O; A; H ). Pink is KLR with partial observation
(O; A 1� 3 ). Blue is BN with full observation (O; A; H ). Green is BN with
partial observation (O; A 1� 3 ). The transparent regions represent the one
standard deviation of the true positive rate.

show that at the signi�cance level0:05, the hypothesis is
accepted for the KLR, but rejected for the BN. In other
words, KLR with partial observation performs similarly to
BN with both observation conditions. Another result is that,
when real sensory featuresH and A4 are not observed,
the performance drop fordishwashingtask in the BN is
higher than for the other two tasks. This is related to the
differences in the task requirements of grasp stability which
has explained the structural differences depicted in Fig. 4.
For example, whenaNV is not observed indishwashing,
p(T jX ), more useful information is lost than inpouring.
Overall, BN modeling provides high classi�cation results.
We prefer BNs since they allow inference on any variable
given full or partial observation of others. KLR requires
training separate models for different observation conditions.

C. Inference

Fig. 6 shows likelihood maps in relation to different
features, tasks and object categories. The brighter color
indicates higher probability of a successful grasp. On the
left side, we can see the results onp(nposjtask; obcl), where
the hand positions in the object frame are projected on the
unit sphere. For thepouring task, the robot should not grasp
the mugs or the bottles from the top, which is re�ected by
the dark color on thenpos sphere. However, top grasps are
allowed for hand-overtask. Among the two object classes,
only the mugs afforddishwashingtask, which is indicated
by the fact that the likelihood maps are almost completely
black.

On the right side, the results of the two tactile features pro-
jected on the low dimensional space, 3Dp(iC jtask; obcl) for
hand-overtask and 2Dp(aNV jtask; obcl) for the other two
tasks are seen. We observe clear differences in these “hap-
tic images” both between the two different object classes,
and also between the different tasks. This re�ects different
“haptic expectations” given task and object conditions. For
the pouring task, we observe that the mugs has a clear cut
between “bad” and “good” regions in theaNV map, whereas
the bottles have more gradual change in the likelihood map.
The reason may be that the bottles are much taller than the
mugs therefore there are more grasps along the longitudinal
direction on the bottles that have gradual changes in grasp
quality.



TABLE II

MEAN AND STANDARD DEVIATION OF AUCS FOR THE THREE TASKS.

Task KLR full KLR partial BN full BN partial

Hand-over 0.97 (0.01) 0.90 (0.01) 0.90 (0.04) 0.86 (0.01)
4 0:07 > �

Pouring 0.98(0.01) 0.90 (0.01) 0.88 (0.02) 0.86 (0.02)
4 0:07 > �

Dishwashing 0.98 (0.01) 0.87(0.02) 0.92 (0.01) 0.86 (0.02)
4 0:07 > �
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Fig. 6. Inference: The likelihood maps of the continuous variables conditioned on task and object class. Left side in inference results shows
p(nposjtask; obcl) for all the three tasks. On the right side,p(iC jtask; obcl) is obtained forhand-overand p(aNV jtask; obcl) is obtained for the
other two tasks.

D. Model Application

We conclude the paper by a task-oriented, stability-based
grasp adaptation scenario. The goal is to demonstrate one
way of applying the proposed probabilistic framework. Fig.
7 depicts a two-step grasp adaptation process, where the
�rst step predicts if a planned grasp hypothesis affords an
assigned task (from the simulatedO; A1;2;3 features) before
it is executed on the real robot, and the second step predicts
if the grasp affords manipulation demanded by the task once
the grasp has been executed. Here the sensory inputsH and
A4 are available which allows more accurate prediction with
the full observationp(T jO; A; H ) before the object is lifted.
Such adouble-guardedsystem is bene�cial to ef�ciently plan
and execute the robot grasping.

Fig. 8 demonstrates a grasp adaptation process for the
input pour with this detergent bottle. The top row shows the
grasp hypotheses sequentially produced by a planner. Before
they are executed on the real robot platformp(TjO; A1;2;3)
rejected the �rst three hypotheses. This is re�ected by the
location of data point (green dot) in the dark region of
npos likelihood maps. The grasp replan is triggered until the
fourth hypothesis is found to be good for grasp execution.
It is however predicted to fail under the full observation
p(T jO; A; H ) (aNV is in the dark region of the likelihood
map). A replan is again triggered until a good grasp is found
with the full observation.

Object
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Fig. 7. Application Diagram: Task-based grasp adaptation.

VII. C ONCLUSION

We have proposed a uni�ed probabilistic framework us-
ing Bayesian networks to assess grasp stability in a task-
oriented manner. The framework enables combination of
human supervision and self-exploration during manipulation
to encode task-dependent stability requirements. The learned
network successfully predicts outcomes of a grasping action
both in terms of the geometric requirements and in terms
of the stability demands for the subsequent manipulations.
Since the high-level task goals are seamlessly linked to
low-level haptic sensory outputs, grasp planning and control
are ef�ciently entwined. In addition, the generative model
allows us not only to predict grasp success and task rel-
evance, but also convey domain knowledge. We can infer
structural dependencies between different variables, and form
conditional expectations on various sensory features. In other
words, we can reason on which sensory features are most
relevant for a speci�c task and the robot can perform on-
line decision making on what-to-measure, thus optimizing
the use of sensory data.

The work opens an interesting avenue for future research.




