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Summary

The contribution in this deliverable is on multisensory object exploration and perception, as
detailed in Tasks T4.3, T4.4, and T4.5. The ability to manipulate objects depends on knowledge
of the objects' geometry, pose, and surface properties. Understanding both object properties and
how these a ect the interaction with the manipulator is necessary for using the objects as tools
for performing subsequent tasks.

We explore di erent perceptual methods exploiting di erent sensory modalities, to gain
understanding of what properties an object possesses and what types of manipulation action is
possible for a speci ¢ object with a speci ¢ grasp. Algorithms have been developed both for
detecting object properties and learning manipulation a ordances.



Chapter 1
Published Results

The results for this deliverable have been accepted for publication in peer-reviewed venues. This
section contains a short description of the contributions, and references to the published reports,
which are appended to this document.

1.1 Multimodal Shape and Pose Perception

As detailed in task T4.4, we study perception of the geometric shape and pose of di erent
objects, using a gaussian process framework to model geometric shape based on observations.
The developed approach is initialized with a visual image of the object, and a series of tactile
interactions is then performed to re ne the model. The method includes a rational exploration
strategy to determine the targets for tactile exploration that will reduce uncertainty the most. As
detailed in task T4.3, we also study how we can combine external visual measurements of
articulated objects (a robot) with a rough estimate of internal state (joint con guration) to

re ne a highly accurate model of that state using virtual visual servoing. The results are
published in [1, 2].

1.2 Learning Manipulation A ordances

In the context of tasks T4.5, T2.3, and T5.4, we study the problem of measuring and learning
manipulation a ordances of di erent object/grasp combinations. We present a probabilistic
framework for grasp modeling and stability assessment. The framework facilitates assessment of
grasp success in a goal-oriented way, taking into account both geometric constraints for task

a ordances and stability requirements speci ¢ for a task. We also address the problem of
identifying continuous bounds on the forces and torques that can be applied on a grasped object
before slippage occurs. This is formulated as a regression problem which is solved using a
Gaussian Process approach. We demonstrate a dual armed humanoid robot that can
autonomously learn force and torque bounds and use these to execute actions on objects such as
sliding and pushing. The results are published in [3, 4].
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Enhancing Visual Perception of Shape through Tactile Glances

Marten Bprkman, Yasemin Bekiroglu, Virgile 8man, and Danica Kragic

Abstract— Object shape information is an important param-
eter in robot grasping tasks. However, it may be dif cult to
obtain accurate models of novel objects due to incomplete and
noisy sensory measurements. In addition, object shape may
change due to frequent interaction with the object (cereal boxes,
etc). In this paper, we present a probabilistic approach for
learning object models based on visual and tactile perception @
through physical interaction with an object. Our robot explores lx s,
unknown objects by touching them strategically at parts that
are uncertain in terms of shape. The robot starts by using only Point cloud
visual features to form an initial hypothesis about the object from the camera
shape, then gradually adds tactile measurements to re ne the )
object model. Our experiments involve ten objects of varying ‘
shapes and sizes in a real setup. The results show that our o
method is capable of choosing a small number of touches to ih&
construct object models similar to real object shapes and to }
determine similarities among acquired models. )

Schunk Hand

front side

. INTRODUCTION

One of the reasons that makes the process of autonomo
grasping challenging is that object properties required fol o
grasp planning such as shape are commonly not known """

a priori. In addition, sensory information used to extract

this information from the environment, e.g. vision, is prone

to error. Processes prior to shape extraction such as scene
segmentation are not perfectly accurate due to several issues,
e.g., occlusions and noisy measurements. Besides object
shape, conceptual high-level object category information is S
another important input that can be used. In particular, for e points in red
goal-oriented grasp planning, different instances from thE
same category can be grasped in a similar way for a partICUIaurements from a Kinect and tactile measurements from the

task. F.Of instance, bottles should be graspe_d from a side tS%rgers. The model is formed based on the point cloud (in
a pouring task, so as not to block the opening.

Humans interact with the environment using rich sensor\}ellow) from the camera and the contact points (in red).

information. Studies show that both visual and haptic modal-
ities contribute to the combined percept [1]-[3]. Results

from [3] suggest that observers integrate visual and haptic . .
shape information of real 3D objects and that bimodal shar?gmeCt affords. If the shape of the object were known, one

. . . could get some idea of what actions to consider, especially
estimates are more reliable than shape estimates that rely.pn L .
; O it the shape is similar to an object that has already been
either vision or touch alone.

: . . . manipulated. Much information can rovi through
The goal of our work is to complement visual information anipulated. Much information can be provided throug

with tactile sensing in order to acquire 3D object models. Wgtereo vision, using €.g. a Kinect device. Regardless Of_Wh'Ch
tereo vision system is used, however, only one side of

investigate how to deal with uncertainties in the sensory da?a : : : . X
. . ’ n object is seen, i.e., the one side facing the cameras.
to extract object shape and category. Given a scene like t

R . > . . ithout any additional sensory modalities, one can only
one shown in Fig. 1, with an object in the center of view . . .
. A . . : make quali ed guesses of what the occluded side looks like,
our goal is to gain insight on what manipulation actions the . : .
using assumptions such as symmetry [4], assumptions that
M. Bjorkman, Y. Bekirglu, V. Hogman, D. Kragic are with the Centre May well be incorrect. In t|’_1|§ PaPer we '_nStead propose
for Autonomous Systems and the Computer Vision and Active Perceptidduch as a means to get additional information. By carefully
Lab, CSC, KTH Royal Institute of Technology, Stockholm, Sweden. Ema”touching the object, we will show how an object model

f celle jyaseminb jvirgie jdani g@kthse . This work was supported by the Swedish . . .
Research Council and the EU projects eSMCs (FP7-1ST-270212) afn be created, a model that provides enough information

RoboHow.Cog (FP7-ICT-288533). to categorize the object based on shape.

/ Model Object

Points from one sensor

irg. 1: Extracting object model: We rely on visual mea-



Il. RELATED WORK AND CONTRIBUTIONS explore the whole object. This is an iterative process where
the robot executes more touches as it is less con dent about

In robotics, object shape estimation has been studied Withe object shape. In summary, our contributions can be listed
unimodal data, i.e., only visual [5] or tactile [6] sensing, andys follows:

bimodal data with visual and tactile sensing combined [7].
Clearly, vision alone delivers useful information about object
shape. Krainin et al. [5] proposed a method where a robot
picks up and moves an object in front of a sensor. Their
approach based on Kalman lters is able to build 3D models
of unknown objects using a depth camera observing the
robot's hand moving the object. However, they showed that
the approach may produce failures with poor alignment in
case of a combination of high uncertainty in the object pose,
nondistinctive object geometry (completely planar surface)
or fairly uniform color and poor lighting conditions. Tactile
information can be used to alleviate such problems.
Bierbaum et al. [8] introduced the idea of using Dy-
namic Potential Fields for tactile exploration to build a con- [1l. OBJECT MODELLING

tact/tactile point cloud of an unknown object. Their system | this section, we describe how objects are represented
requires a rough initial estimate about the object positiothased on visual and tactile measurements. We introduce
orientation and dimension, then exhaustively performs grasgsaussian Process regression modeling of Implicit Surfaces,
in unexplored regions. Faria et al. [9] also builds contaghe strategy to determine how to acquire tactile data and the

point clouds in an exhaustive way. They however follow &hape descriptors used for measuring similarities between
probabilistic approach to store the extracted tactile pointgferent objects.

in a volumetric map. In their experiments, a human subject
wearing a glove with magnetic tracking sensors to obtaiff- Visual Measurements
ngertip positions performs grasps that follow the contour of An observed object is segmented from its background
objects. Meier et al. [6] followed a similar strategy and use@ising a segmentation and tracking system that works over
a probabilistic approach, Kalman lters, to build a model ofsequences of touches. The system uses stereo vision, in our
the contact point cloud. Their robot grasps objects at differegtise a Kinect device, in an heterogeneous MRF based frame-
heights and positions also varying the orientation of the hangkork [15]. The framework uses color and depth information
Their results show that the acquired models can successfutly divide the scene into either planar surfaces, bounded
be used for classi cation. objects or uniform clutter models. The planar and uniform
There are approaches that supplement vision with moraodels are automatically initialized, while an ellipsoid used
sensory information especially where visual sensing is weatg model the observed object is initiated by a point that
e.g., occluded object parts. Maldonado et al. [10] used ia manually placed inside the corresponding image region.
proximity sensor to scan the unseen parts of an object Iyrom the resulting object segments we get point clouds that
a depth camera without touching the object. They combineskrve as starting points for object modelling. Later we will
the point cloud from the camera and the sensor and built a 3f®mplement these points with tactile readings from touches.
Gaussian point representation based on the convex hull of the
complete point cloud. Their representation simply containg-
the centroid and the shape of the object through the mean and-rom a set of measurements of 3D poifits;i = 1::Ng
the covariance matrix of the Gaussian distribution. Dragiethat are located on the surface of an object, we now describe
et al. [7] has included laser data in addition to haptic medow to derive implicit surfaces for representation. The model
surements in order to complement vision. They proposed &hould later be used for deciding object category based on
use Gaussian Process Implicit Surfaces to fuse the uncert&ifape. In our case the measurements originate from stereo
sensory data and showed that this representation can be ugisipn as well as tactile readings. With a functibn R3 7!
to control reaching and grasping such that the hand is mov&d we de ne an implicit surface by the supporting points
and oriented towards the object and grasps aligning the2 R® that satisfy
ngers according to the object shape. There are also studies f(x)=0:

that focus on object recognition without explicitly modeling The functionf (x) is modelled by Gaussian Process (GP)

the full 3D shape, but rather representing the objects based . . .
on visual [11], tactile [12], [13] or both features [14]. regression [16], with each observatiprs f (x)+ assumed

Diff v f the af tioned h ¢ to be subjected to zero-mean Gaussian nois&y (0; 2).
tierently irom the atorementioned approaches, we ocugy, shape of the GP is governed by a thin plate covariance

on building object models that can be extracted with Aunction [17]

small number of actions (touches) in order to understand the

category objects belong to, rather than exhaustively trying to cow(f (x;);f (x;)) = k(xi;xj) =2jrj* 3Rr?+ R%

We incrementally include tactile readings in the shape
estimation to further re ne the object model that is
initialized based on visual measurements only.

We use a probabilistic approach to shape estimation
through Gaussian Process regression to deal with un-
certainties in sensory measurements.

Instead of an exhaustive exploration, we obtain a model
of a given object by selecting where to touch next, given
the object regions where the shape estimation is most
uncertain.

Our system is able to build models that can be used for
shape categorization after a small number of touches.

Implicit surfaces



(a) v. only (b)y1t. (c) 4t (d) 12 t. (e) 54 t. Real

Fig. 2: Evolution of object models against the number of touches (t.) for the cylinders: (a) Initial models based solely on
visual (v.) measurements depicted by yellow points. The models are oriented to show the back sides that are not visible
by the camera. Highest uncertainty is represented by red color and dark green regions correspond to least uncertainty. (b)
Models after including tactile measurements from one touch applied to the region with highest uncertainty. Contact points
obtained by touching are depicted by red points. (c) Models after 4 touches. (d) Models after 12 touches which were found
suf cient to group all the objects con dently. () Models after exhaustively exploring the objects which require 54 touches
with our setup. (f) The real objects for comparison.

wherer = jx; Xjj andR is a maximum possible value of C. Action selection and cue integration
r. This covariance function has slightly better characteristics

than the more frequently used squared exponential functio (x), but the mearf and varianceV(f) of all possible

in particular for rectangular objects Wher(_e the atness o unctions that could t the measurements. The variance can
surfaces needs to be preserved. Quantitatively, however, W& Lsed as a measure of uncertainty, with higher variance

have not observed any signi cant differences between tht%r points far away from already recorded measurements.

two when applied for categorization. Examples of implicit surfaces and variances can be seen in
Fig. 2a. A surface is given by points for which the mean
The model is learned from a set of tuples;yi), where s zero and the colors illustrate the corresponding variances,
yi = 0 for the stereo vision or tactile measurements. Sincgith red for points of highest variance. The stereo vision
a physical object, at least those that can be acted on bypgint clouds are shown as yellow points, most of which are
robot, occupies a certain volume in 3D space, the implicticcluded by the objects in the gure.
surfaces need to be compact (closed and bounded). In ordefrg e ne the object models and decrease the uncertainty,
to guarantee this, we place additionally exterior points, fofhe robotic hand is guided towards those points for which the
whichy; = +1, on the boundaries of the scene and a singlgariance is large in order to select a position for touching.
interior point that is forced to be inside the closed surfacge call these touchesrdered touches in the experiments
withy; = 1. below, as opposed tcandom touches where new touches
are selected in random order. The arm-hand con guration
In the later experiments, this interior point was chosen asas earlier been calibrated with respect to the camera system,
the centroid of the stereo point cloud displacedltmyn along  with a precision of a few millimeters. The highest variance
the direction of the camera, assuming that this is the smallgaint is searched for in a discrete action space de ned by the
object thickness one can expect. With objects assumed to Yertical position and the approach angle, both of which are
located within a cube with side lengths = 30 cm, and computed with respect to the centroid of the current model.
centered at the centroid, the parame®emwas set to 3L. For each possible action, the closest point to each respective
The only remaining hyperparameter is the expected noisactile sensor pad is found on the implicit surface. The
level which is set to 2 = 0:1. The value was chosen so asaction selected for execution is then based on the maximum
a balance between the smoothness of the surfaces and ¥agiance found among all actions and sensor pads.
noise in the integration of tactile and visual readings. Touches are then executed in sequence and the GP model

With GP regression we do not explicitly get a function
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Fig. 3: Convergence of curvature point clusters using ordered (solid) and random (dashed) touches with respect to the nal
result after up to 54 touches (x-axis). Plots from random touches are based on the average from 10 runs and are thus

smoother than those of the ordered touches.
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is updated accordingly, as new measurements are integratedror comparison using surface curvatures, the Marching

with the model. To speed up computations, the measuremeuibes algorithm [20] is rst applied to the same grid to nd

set is made sparser to about two thousand pbirfikis is  a triangular mesh representing the implicit surface. From this

necessary since the computational cost of the GP increasesrtesh, principal curvatures are then computed [21], with one

the cube of number of points. Recorded tactile measuremer2® measurement per vertex point. The shape of an object is

can be seen as red points in Fig. 2 for an increasing numbthius represented by a sample set of about 500 measurements

of touches. In some cases, these points are displaced withcurvatures. A kernel based two sample test [22] is used

respect to the implicit surface, which might happen if theo compare two such representations, using Gaussian kernels

object moves considerably when it is touched. To minimizavith standard deviations of 0.25, which yields a soft decision

these displacements, which is critical for long sequences oh the similarity between the sample sets.

touches, the object frame is constantly updated for each new

touch. This is done by registering the stereo vision point IV. EXPERIMENTAL EVALUATION

clouds, given by the segmentation system, before and after|n this section, we rst describe our experimental platform

a touch using the Iterative Closest Point algorithm [18] angnd then present results from shape estimation and catego-

transforming new measurements back to the original framgization experiments comparing touch selection strategies and

D. Shape Descriptors shape descriptors. _ _

Representing obiect shape as a GP or a mesh derived fr .The experimental robot platform is composed of an indus-

ointgon the rSsuItJin im Ili[::it surface is not strai htforward?'rlr%‘I Kuka arm (6 dof), a three- nger Schunk Dextrous hand

F;th lis t m Y ph for action sel ? Inst 7 dof) gquipped with tactile sensing arrays, anq a Kingct

It the goal 1S to compare shapes for action selection. InSteag, o yision camera. The robot can acquire tactile imprints

we represent the extracted implicit surfaces with sha

. . U . . a pressure sensitive tactile pads mounted on the Schunk
descriptors that capture information invariant to possible Mand's ngers. Each nger of the hand has 2 tactile sensor
nipulation actions, while discarding redundant information X

T i + obiect ford simil i hil arrays composed of 6x13 and 6x14 cells, which yields at
wo very ditterent objects may atiord simiiar actions, Whil€ ., 4gg tactile points after one touch. For each touch, the
two seemingly similar objects might not. For example,

$and is set to a xed initial joint con guration where the

rectaqgular box.and a cylinder typically requirg glifferen&humb opposes the other two ngers as seen in Fig. 1, then
grasping strategies, but they may well appear similar Wheﬂgers are closed until contact is sensed.

e.g., represented as ellipsoids, if aspect ratios are similar. In an earlier study [23] we concluded that the object class

Iatligntrilfv;\:ic:rl:{ ;VhealOeolé:Stctr\?/czoflsﬁeégntzé?a?;g%zrrfe:{asn;was an important factor, if one wants to determine what
P plors; rasping action to pursue to ful Il particular tasks, tasks such

surface curvatures. Zernike moments have successfully be 0 hand-over pouring or dish-washing. However, the object

use_dl f or shape retrieval [19] a nd are attract!ve due to thc(?ass was not derived directly from sensory data, but given
exibility and low number of dimensions required, as well

. . manually prior to the experiments. In this work, we aim to
as the fact that Euclldeaq distances can be .use.d fqr Shaé’tﬁomate this process by learning shape-dependent features
comparison. For the Zernike moments, voxelization is rs

applied in a 3D grid with voxels of side lenglfe 0:75 cm, o replace the manually set object class. Our starting point

keeping the interior voxels for which the GP meansfare 0 Is thus a set of objects for which we know the respective
pIng - affordances from earlier experiments. These ten objects can
at their center points.

be seen in Fig. 4, with names indicating the similarity
10n a 3.2 MHz Core i7 CPU the cost of computing the GP model andl aﬁord?d actions. The end goal is to qse stereo vision
associated shape descriptor is abéwt using PCL, VTK and Eigen. and tactile measurements through a series of touches to
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Fig. 4: Spectral embeddings of curvature point clusters, after O (left), 1, 4, 12 and 54 (right) touches, using ordered ( rst
row) and random (middle row) touches, as well as with Zernike moments and ordered touches (last row). Ordered touches
lead to faster convergence than random touches, and Zernike moments cluster objects more based on similarity in object
aspect ratios, than similarities in affording grasp actions.

determine which grasping action the object would affordfor cyl-2 and 18 forbox-2 due to their lower heights) were
The question is: how many touches this would require angerformed from the side parallel to the table in a grid of

what representation should one aim for? 9 angles 225 apart) and 6 heights (spaced at a vertical
distance of 2 cm) with respect to the table. The tactile
Sy 2 R N . . . .

PO R S I B measurements are illustrated as red points in Fig. 2. From
oy the resulting implicit surface model, shape descriptors based
oyl-2 on curvatures and Zernike moments (up to order 10) were
o3 computed and analyzed.
cyl-4
spr-1 The convergence of the curvature based descriptors was
spr.-2

studied by computing the distances between the descriptors

o after different numbers of touches and the nal one. In
box.2 Fig. 3 the convergence is shown using either ordered touches
box3 computed from points of maximum GP variance or touches

_ o _ _ _selected randomly. The randomly generated sequences of
Fig. 5. Similarity matrices using up to 54 touches Wwithyoches were executed 10 times and then averaged. Thus the
columns and rows given by the objects in Fig. 4 using eitheforresponding curves are slightly smoother than those of the
curvature measures (left) or Zernike moments (right).  ordered touches. The difference between the two strategies

) is not consistent. For most objects the difference is small
A. Experimental results and for some objects random touches are sometimes better,

The ten objects were placed on a table-top with the Kinedn particular in the beginning. The reason is because ordered
camera overlooking objects from one side. To fully covepushes are computed from implicit surfaces obtained so far
an object with tactile measurements, up to 54 touches (&hd at an early stage the shapes are still mostly unknown. For
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Fig. 6: Evolution of object models against the number of touches for the spray bottles and the boxes. See Fig. 2 for details.

the box shaped objects, the rst ordered push is usually atthe embeddings, the bene ts of ordered touches can also
corner edge on the back side of the object, when a preferalile seen, compared to the random ones. Already after four
push would instead have been on one of the sides. Thustduches, the three classes are grouped, even if it is not until
takes another push or two for the ordered touches to caté touches théox-1is closer to the other boxes than the

up. From the graphs in Fig. 3, as well as from Fig. 2 androup of spray bottles. The reason for this is that this box
6, it can be concluded that most changes occur during the thinner than the other boxes and since the GPs tend to
initial ten touches. smoothen edges, it is more like a spray bottle after too few

As an illustration of the similarity between different ob-touches. The thin plate prior tends to weaken this effect
jects, similarity matrices were computed for both curvaturéompared to a typical exponential one.
and Zernike based shape descriptors, which are given in
Fig. 5. From the structures of the two matrices it can be
concluded that while the curvatures capture classes relevant oss
for grasping, Zernike moment does not do so to the same
degree. In fact, the grouping is quite different for Zernike
moments and more related to the aspect ratios of the objects
than the curvatures.

This can be more easily illustrated with spectral clustering.
Using the method of Ng et al. [24], we computed 2D spectral
embeddings from the similarity matrices, embeddings that
are shown in Fig. 4 for different numbers of touches. Here
the objectcyl-3is grouped withbox-1andbox-3for Zernike
moments, due their similar height/width ratios. Whereas the

09

50 60

10 20

C2 : 0 % w0
elongateccyl-2 andcyl-4 are similar, they are very different Number of Touches

from the shorter cylindecyl-1. Even ifbox-1is a bit distant Fig. 7: Evolution of quotient between within- and between-

from box-3 using curvature measures, the three classes c§Ategory distances with random (dashed) and ordered (solid)
still be trivially found using e.g. k-means clustering. Fromtouches using curvatures, as the number of touches increases.



A nal illustration of the bene ts of ordered touches for
shape discrimination can be seen in Fig.7, where the quotient
between within- and between-category distances are shown
for an increasing number of touches. The quotient stabilizegs]
after only about ten ordered touches, but for random touches
at least 25 touches are required. Thus even if the benet
of ordered touches are sometimes limited when studying

individual objects, they are considerable for categorization.[7

V. CONCLUSIONS

This paper has presented a metRddr creation of object
models from visual and tactile measurements, with the goal

of later applying these for classi cation and manipulation.
From an initial set of visual measurements, an object mod

(4]

J. Bohg, M. Johnson-Roberson, B. Leon, J. Felip, X. Gratal,
N. Bergstbm, D. Kragic, and A. Morales, “Mind the gap - robotic
grasping under incomplete observation,”IEEE Int. Conf. Robotics
and Automation (ICRA)May 2011, pp. 686-693.

M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3d object modelingiht. J. Robotics Research
vol. 30, no. 11, pp. 1311-1327, September 2011.

] M. Meier, M. Schopfer, R. Haschke, and H. Ritter, “A probabilistic

(8]

e’

is re ned by touching the corresponding object on surface

points predicted to be most uncertain. Given a curvatufé

based representation of object shape, it was shown that about

ten touches are sufcient for objects to be grouped into

clusters relevant for manipulation. What remains to be testétt!
in future work, however, is to what extent this representation
captures manipulation affordances and can be directly us&d]
for action selection, preferably without using an intermediate
step of supervised object classi cation.

A weakness of the current system arises from the fact thEs]
GPs have a computational cost proportional to the number of
measurement points cubed. To cope with this we currentjyg
sample from the total set of points to make the problem
computationally tractable. However, there are methods f6t°]
sparse GPs that choose an optimal subset of points instead
[25], [26], which will become a necessity in particular if [16]
measurements from additional modalities are later include

The presented work can be extended in several directio
We intend to investigate more descriptors, other than surfae]
curvatures and Zernike moments, that can be useful for object
categorization. We will further integrate the presented apigj
proach with a pushing mechanism that can provide additional

information on object affordances, e.g. rolling or sliding,

7]

S.

[20]

potentially leading to more informed decisions about whether
more measurements are needed given a particular task. Gré&gp X. Chen and F. Schmitt, “Intrinsic surface properties from surface
planners e.g., often need information on object category [23],

[27] to plan goal-directed grasps, where objects from thgy;
same category can be grasped in a similar way. Hence, we
also plan to test the obtained object models for grasping tas[l§§]
by using them for grasp planning.

(2]

(3]
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Integrating 3D Features and Virtual Visual Servoing for Hand-Eye and
Humanoid Robot Pose Estimation

Xavi Gratal, Christian Smith, Marten Bjorkman and Danica Kragic

Abstract—In this paper, we propose an approach for vision- robot, which places special requirements on rendering
based pose estimation of a robot hand or full-body pose. The for virtual visual servoing. As we will demonstrate, our
method is based onvirtual visual servoingusing a CAD model system allows us to treat each joint in the same way

of the robot and it combines 2-D image features with depth that treat h of th ts of th fi f
features. The method can be applied to estimate either the al we treat each of the components of the motion 0

pose of a robot hand or pose of the whole body given that its the robot, thus making it suitable for complex models.
joint con guration is known. We present experimental results This paper is organized as follows: in Section Il we review
that show the performance of the approach as demonstrated on g|ated work. The proposed methodology is presented in
both a mobile humanoid robot and a stationary manipulator. . - .
Section Ill and the results of the experimental evaluation are
I. INTRODUCTION presented in Section IV. We conclude the paper in Section V.

Most of the object grasping and manipulation tasks require Il. RELATED WORK
the pose between the robot hand and the object to be known o : .
In general, it is possible to use any tracking method to

prior t_o or during execution qf the grasp. Although IOOWerietrieve the pose of the manipulator. The existing methods
grasping may not need a precise pose of the robot hand rela- s ; ]
can be divided in two groups: appearance-based (also re-

tive t_o the c.)bJECt’ precision grasps and in-hand mampUIat'cﬁ%rred to as global) [6] and feature-based (also referred to as
require a high level of accuracy [1]. In many cases, the exaf cal). These methods differ mostly from each other in the

model of the robot arm may not be available and forward: ; :
. S . . ind of features that are used, the matching algorithm and
kinematics is not accurate enough to guide grasping [2]. L
- L - . he optimization method. Appearance-based methods have
Vision-based hand pose estimation can alleviate this problem - .
; . —._commonly been used for obtaining the pose of a moving
and enable control without an extra step requiring positiofi NS :
. - . camera [7], [8] or for coarse pose estimation of objects

or image-based visual servoing.

Similar requirements arise when arasping and mani ulg_wat occupy a substantial portion of the image or are easily
. q grasping b .Ssegmented [9]-[12]. There are also approaches that rely on
tlon_t_asks are performed _by several robots where the relaUYr(]ee use of ducial markers [4], [5] that may limit the mobility
position of the rpbots with respect to each chgr must' bgf the manipulator, due to the requierment of markers being
known [3]. In this case, one robot can obtain its relative

o : . e continuously in the visual eld of the camera.
position with respect to another robot by identifying the full The features commonly emploved for tracking are corners
pose of the robot body or solely the pose of its hand. y employ 9

. . o edges. These are extracted using some interest point detec-
In this paper, we propose an approach for vision-bas

pose estimation of a robot hand or full-body pose. Th or [13], [14] and then encoded into a local descriptor [15]

method is based on Virtual Visual Servoing that uses RG 0 ease the matching of the features with the ones stored

: X In the model. These kinds of features usually work better
D Images together with a CAD model 0 f the robot, towith textured objects, and can be problematic with robotic
continuously track the pose of a robot with respect to th.ﬁnanipulators, which usually consist of at, shiny surfaces
ggnm,:iL%tigrr]sbgfwﬁgnwglrﬁe;?gt parts of a robot. The mall\5]vhic:h change with illumination. For the optimization part of
i ) ) ) o the method, if the points are correctly matched and detectable
The integration of 2-D and 3-D information into thej, 6 views with arbitrary precision, three points are enough
Virtual Visual Servoing framework. Our method, givenyq, gq|ve the problem [16]. In general, more points are needed,
an approximate initial pose estimate, re nes it iteratively, ,y methods exist that are robust in the presence of noise due
to obtain a more precise estimate. We show that the U jncorrect matches or inaccuracy in point detection [17]
of S-D mformatlon_lmproves the estimate in comparlsorhg]_ Most of the systems based on these methods use
to using only 2-D images. L features extracted from 2-D images as input, and are thus
A method for pose tracking of a robot in joint spacey;yy sensitive to viewpoint changes. Our method, by using
given that its con guration is known. This adds the, ) 3.p CAD model of the tracked object, is more tolerant
challenge of having to track each of the links of th&, \jewnoint changes. Some methods, such as [20], also use
The authors are with the Computer Vision and Active Perception Lab?- CAD model for tracking the ObjeCt' but can Only support
Centre for Autonomous Systems, School of Computer Science and Comnsimnple models, with a few hundreds of polygons, and lack
nication, Royal Institute of Technology KTH, SE-100 44 Stockholm, Swejjrect support for tracking a complete kinematic chain.
den. This work has been supported by EU FP7 grant 2885:’>:’>—RoboHow.cog,Virtual Visual Servoing (VVS) [21] is an iterative opti-

Swedish Research Council and Swedish Foundation for Strategic Research.¥""* ) ] .
e-mail: fjaviergm jccs jcelle jdani g@kth.se mization method where given a real image of the object for






using values in the edges of the object, and is extremely sensitive

2 3 to small occlusions, such as the ones that can be caused by
Xe cables in robotic environments. Also, we do not have depth
Pe = EZCZ = HSHY(RY;f)H P ( Mo, (1) information for the whole scene, but only for the manipulator,
1° which will usually only cover a small part of the depth map.

The approach we apply is to use the distance from one
where we make it explicit that this transformation depend3-D point obtained from the virtual image to the closest
on the current estimation of the position and rotation opoint obtained in the real image. The 3-D image is actually
the manipulator and the joint con guration. To project thean edge image, in the sense that each point corresponds to
resulting point into the image plane, we use the projectiowhat would be an edge in fronto-parallel 2-D cuts of the
matrix P, which must correspond with the projection matrixscene, so this method has similar advantages to the one we
for the camera model of the real camera. The p@inv) in  adopted for the 2-D information. We implement it again

the image can then be obtained as: using a 3-D version of the distance transform, where we
. u " create, for the real image, a 3-D map of the distance from
Pp= Xp Yp Zp Wp = Ppg; v - yg=ws (2) each point in space to the nearest extracted point. Then, for

each depth point in the virtual image, we just need to perform
Using this transformation we generate three different mapa.lookup for the nearest point in the 3-D map, and we obtain
Is(u;v) contains 1 where a point was rendered and O faa directed error vector. Another practical advantage of using
the backgroundDs(u; v) contains the depth of the renderedthis method is that it is very similar to the one used for 2-D
point. It is also used during the rendering process fogdges, so it can be easily integrated into our framework.
occlusion culling. Finally,Ts(u; v) contains the index of the  3) SURF features:The previous features meet the key
link for the corresponding pixel. requirements of speed and work well with textureless objects,
but their main drawback is that since each point in one
image is compared to the closest point in the other image,

As mentioned before, the rendered and real images attee performance degrades when the initial pose is bad. To
compared using image features. In our previous work [22jmprove the performance in such cases, we need features that
we used only edges in the 2D image as a feature. Here, imag@n be robustly matched between the images and we chose
edges are still used, but they are combined with new features use SURF [26]. Since our CAD models are not textured,
to increase the robustness and accuracy of the system. we cannot directly detect SURF features in the rendered

1) Image edges:We use a Canny operator for edgeimage. We could generate texture maps for our CAD models,
detection. We extract edges in both the real and virtudut even then, detecting SURF features for every generated
images, and the vector between an edge point in one imagietual image would be prohibitively expensive. Instead, we
and the closest edge point in the other image gives usearich our CAD model with pre-detected SURF features. In
directed error vector. For efciency, this is implementedan of ine process, we detect SURF features in different parts
using the distance transform method: for each real imagef our model, and for each feature we record its 3D position
a map is created which assigns to each point in the magithin the CAD model, together with information about the
the position of the closest edge point. Then, for each edgdéewpoint, the detection size and the feature descriptor. Then,
point in the virtual image, the error vector can be obtaineduring the pose estimation loop, SURF features are detected
by a simple lookup in that map. Since our method assuméseach captured image, and their descriptors matched against
an initial pose estimate, edges should only be matched where database of stored features. Matches that are not consis-
their orientations are similar. To enforce that, 8 maps anent in terms of viewpoint and detection size are discarded.
generated, which record the closest edge within a certaifhe distance between the feature as detected in the real image
range of orientations. Then, for each edge point in the virtuaind the projection of the recorded position into the rendered
image, the lookup is performed only in the map which bedtnage is then used as the feature to minimize.
corresponds to the orientation of the edge point.

2) Image depth:One of the important parts of the system
is the choice of appropriate features for the raw depth infor- The basic idea behind visual servoing is to create an
mation. SIFT-like 3-D features, such as the one introducegiror vector which is the difference between the desired
in [24] are a possibility, but they suffer from the sameand measured values for a series of features, and then map
drawbacks as SIFT for the 2-dimensional case. Robotthis error directly to robot motion. Les(t) be a vector
surfaces are often at, and the matching of features is a@f feature values which are measured in the image. In our
expensive operation that would need to be performed f@ase, it is constructed, at each iteration, with the distances
every frame. It is also possible to use the depth informatioth between the detected points in the real and synthetic
directly as a feature. In [25], the depth map is assumed to lmages ass(t) = dj;dy;:::;dy " Then s(t) will be the
smooth, and the difference between the depths of each pomate of change of these distances with timeHa$(RS;t5)
in the source and target images is used as a feature. Tiseupdated to improve the t between real and synthetic
main drawback of this approach is that it leads to incorredinages. The change in this transformation can be described

C. Image features

D. Visual Servoing



TABLE |
ESTIMATION ERRORS IN THE RETRIEVED POSE FOKUKA ARM AND NAO ROBOT.

KUKA arm NAO
simulation real data simulation real data

2-D 2-Dand 3-D| 2-D 2-Dand 3-D| 2-D 2-Dand 3-D| 2-D 2-D and 3-D

features features features features features features features features
Translation error 11.3 mm 9.8 mm 15.8 mm 12.1 mm 10.2 mm 9.7 mm 17.1 mm 11.7 mm
parallel to image plane
Translation error 40.1 mm | 9.2 mm 46.3 mm | 9.7 mm 30.7 mm | 9.9 mm 39.3 mm | 9.6 mm
perpendicular to image plang
Rotation error 1.01 0.63 1.43 0.93 1.23 0.79 1.17 1.08

by a translational velocityl (t) = [ Ty (t); Ty (t);Tz(t)]T and used to render the point from the model to nd the point
a rotational velocity (t) = [!x(t);!y(t);! (01", which p" (x;y; z ) in the coordinate system of the model. Different
form a velocity screwr (t) = Tx; Ty; T2 !« ! ys! 2 T We points in the image will correspond to different links in the
can then de ne the image jacobian or interaction at a certafi?Pot, but we can obtain the link for each point, and thus its
instant as] so thats = Jr where corresponding projection matrix from magp(u; v).

Jas -

m (v y- H i i
@i @4 @d 3 Once we have™ (Xx;y;z ), we can reproject it using the

()
I
()
I
()
Iy

@%r @7 @T @x @y, @, new transformation matrix which would result from applying
@4 @ @i @ @d @ i i ini
- @ _86f o7 ot o o. o. . the smaIISOchange in motion component, obtaln'mg, as we
T @ . . . . . (3) wanted, p?™(u;v). We then compute the new distandg
: : : ' : : to the corresponding point in the real image, and we can
@ @ @4 @d @4 @d i ivati 0 d)= i
@t 67 et o, @, e estimate the derivative g8’ d;)=, where is the change

. ) ) , in motion component.
which relates the motion of the (virtual) manipulator to the

variation in the features. The method used to calculate the IV. EXPERIMENTAL EVALUATION

jacobian is described in detail below. We test the performance of the method with respect to the
However, what we need to be able to correct our posghoice of 3D features. We then give a more extensive eval-
estimation is the opposite, that is, we need to compit® yation of the method's performance in different situations,

givens(t). WhenJ is square and nonsingular, it is invertible, gemonstrating hand-eye calibration or robot pose estimation.
and thenr_= J !s. This is not generally the case, so we

have to compute a least squares solution, which is given By Accuracy evaluation and comparison to previous method
r=J"%s whered” is the pseudoinverse df calculated as  We rst evaluated the accuracy in the pose estimation in
J* =(J37J) 7. The goal for our task is for all the edgestracking two robots: A KUKA industrial arm and a NAO
in our synthetic image to match edges in the real image, $mmanoid robot. We performed tests both with imagery
the target value for each feature is 0, and we can de ne tifeom a simulator and with real-world data obtained from a
error function ae(s) = s 0 which leads us to the simple Kinect camera. The results, which include a comparison with
proportional control law_= K J*s whereK is the gain our previous method which used only 2-D information are
parameter. summarized in Table 1lI-D. Each value is the average error
over 1000 runs. We used 5 different joint con gurations for
each robot and 10 different initial estimates for the pose,
To estimate the jacobian we need to calculate the partiglving the total of 50 starting conditions. Examples of initial
derivatives of the feature values with respect to each of and nal position for a run are shown in Figures 3 and 4.
the components of the motion we are estimatiRg (t; and To evaluate the error in the real-world experiments, we
)- When features are the position of points or lines, it ifieeded ground truth. We chose to compare the results to
possible to nd analytical solutions for the derivatives. Herehow a human would manually align the input point cloud
however, the features are the distances from the edges of thigh the rendered CAD model, using the same information
synthetic image to the closest edge in the real image, so Weailable to the robot. For the position error, we distinguish
approximate the derivative by calculating how a change iBetween errors that are parallel or perpendicular to the image
the motion component affects the value of the feature.  plane, and we observe that the errors in the estimation of the
Each of the feature valueg is the distance between a depth of the object are greatly reduced.
pointp? (u; v ) in the synthetic image and the correspondingB
point p! (u; V) in the real image. We want to nd the point B: Convergence of the method
piso(u;v) which results from applying the small change in To evaluate the robustness of the method, we estimate
the motion component tp°(u;v). We can use the depth the maximum error in the initial pose estimation for which
mapDs(u;v) to nd the corresponding 3D point in camerathe method will still converge, using the KUKA industrial
coordinates, and then use the inverse of the matrix that veem and real-world imagery. In this set of experiments,

E. Estimation of the jacobian



Fig. 3. A few examples of the initial (upper row) and nal poses (lower row) for a Nao robot in several different con gurations. The blue outline
represents the current estimation of the pose. Best viewed in color.

Fig. 4. Initial poses with (a) errors in the joint positions (b) errors in the transformation for the whole manipulator. (c) Converged result. Red outline
represents the current estimation. Best viewed in color.

Fig. 5. Convergence results for (a) only rotational error (b) only translational error (c) both rotational and translational error. Best viewed in color.

we also assume that the joint con guration is known. We We can observe that for translational errors of less than
performed a total of 30000 runs of the method, using vel0 cm and rotational errors of less than 10 degrees, the
different joint con gurations for the manipulator. The resultsmethod converges with high probability. Also, we can see

for different kinds of errors, including a decision boundanthat translational errors along the axis perpendicular to the
for convergence can be seen in Figure 5. image plane and rotational errors around that same axis, a



larger error is tolerated. 2]

C. Estimation of joint con guration

Until now, we have assumed a known joint con guration. [3]

While this is the case in our system, it is not true for many
robotic manipulators. In the following set of experiments, we
assume that the transformation with respect to the base of tHd
manipulator is known, but there is some error in the initial s
estimate of the joint con guration. Having the real values as
provided by our system allows us to compare the results of
our method with the true values. 6]
We ran our method 10000 times for the KUKA arm

using real-world images, with 5 different target (real) joint 7
con gurations, and each time introducing an error of between
-5 and 5 degrees to each of the 6 joints of our arm. A total8]
of 91% of the runs converged, and the average mean—squar@i
error over the joints for each run was 0.83 degrees.

V. CONCLUSION AND FUTURE WORK [10]

We have proposed an approach for vision based pose
estimation of a robot hand or full body pose. The method is
based on virtual visual servoing using a CAD model of thél1]
robot. The method combines 2-D image features with depth
features. The method can be applied to estimate either the)
pose or the full con guration of a robot. We presented exper-
imental, demonstrating the performance of the approach ?r&
both a mobile humanoid robot and a stationary manipulator.

Our experiments show that considering three-dimensiong#]
features which can be easily obtained from RGB-D imageﬁs]
signi cantly improves performance when tracking robots,
especially with respect to the perception of the distance from
the camera to the robot. We have successfully applied ]
method to the tracking of a walking humanoid, as can be
seen in the accompanying video. We also showed that the
method can be used to re ne the estimation for the joint&’]
of a robotic manipulator, where limitations in the hardware
introduce uncertainties. [18]

However, when combining both errors in the transforma-
tion for the base and in the joint con guration, the currengg
method is stable only for limited ranges of errors. We
need further studies on the relative bene ts of 3D featureé
depending on how large these errors are. Preliminary tests
show that the 3D features used are complimentory. Whereas
SURF features are most valuable for large errors, edges 35%
important when errors are small. This leads to the conclusion
that a system could benet from varying the contribution
of different features depending on how far you are from

. ) . . N 22]
converging. Our plan is to continue in this direction, and
gradually increase the radius of convergence, while keeping
the same high accuracy. (23]
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Predicting Slippage and Learning Manipulation Affordances through
Gaussian Process Regression

Francisco E. Mia B., Yasemin Bekiroglu, Christian Smith, Yiannis Karayiannidis, Danica Kragic

Abstract— Object grasping is commonly followed by some
form of object manipulation — either when using the grasped
object as a tool or actively changing its position in the hand
through in-hand manipulation to afford further interaction. In
this process, slippage may occur due to inappropriate contact
forces, various types of noise and/or due to the unexpected
interaction or collision with the environment.

In this paper, we study the problem of identifying continuous
bounds on the forces and torques that can be applied on a
grasped object before slippage occurs. We model the problem
as kinesthetic rather than cutaneous learning given that the
measurements originate from a wrist mounted force-torque
sensor. Given the continuous output, this regression problem
is solved using a Gaussian Process approach.

We demonstrate a dual armed humanoid robot that can
autonomously learn force and torque bounds and use these

to execute actions on objects such as sliding and pushing. We ; : : . .
show that the model can be used not only for the detection of dif cult to construct the GWS in practice since it requires

maximum allowable forces and torques but also for potentially € €xact values of those parameters.
identifying what types of tasks, denoted asnanipulation affor- Besides planning stable grasps, the robot should also
dances a speci ¢ grasp con guration allows. The latter canthen  acquire knowledge of the maximum forces and torques that
gghf:\ig t?ner']tgﬁa ?;]’g'rﬂ SJIJ;?(')ﬁ g}oélg'gitgrtﬁl’soj f]'rm::aer ;;ﬁgn"f can be applied on the object before slippage occurs. Various
with thegenvironment. P ) g methods have been propo;ed for detecting shppag_e [1],
[4]-[6]. Apart from addressing the problem at the signal
I. INTRODUCTION processing level in terms of cutaneous tactile sensing, general

Interaction with and manipulation of objects are essentid@chine learning methods have proven adequate for analysis
abilities of robots operating in realistic environments. Adn cases where noise and imperfect models are inherent to
humans, robots may need to grasp objects for simple tasi§ Problem, [7], [8].
such as moving them from one position to another. More Our work follows the direction of using kinesthetic sensing
complex tasks, such as using objects as tools, requires a mée slip detection in combination with machine learning
advanced ability of manipulating an object in the hand stechniques. Autonomous learning and a physical model of
to achieve a suitable grasp con guration. In this process dhe friction forces are used to estimate the maximum static
achieving and loosing contacts with the object in the handr,iction forces and torques on objects the robot is interacting
events such as slippage commonly occur. The knowledge Wjth. We approach the problem through Gaussian Process
contacts and slippage provides important information abotgression, resulting in a model that can predict forces and
the status of the task one is executing. torques that a grasp can tolerate before the held object starts

For both humans and robots, sense of touch is paramouiPPing. As such, the model can also be used to identify the
for safe and exible interaction with objects and the environaffordances of a specic grasp such as, for example, what
ment. As reviewed in [1], components of tactile perceptiofyP€ of in-hand rotation can be applied to an object while
in humans depend on the sensory inputs within musclestill keeping the object in the hand.
tendons and joints (kinesthetic) and stimulus mediated by The learned bounds can be used as constraints at the
receptors in the skin (cutaneous). Most of the research @#iontrol level to avoid certain motions and thus prevent
robotic tactile sensing addressed the problem of nger-objedlippage of the grasped object while executing the task. In
interactions and grasp stability assessment. If the conte@tdition, the approach also identi es in which directions the
locations as well as the friction coef cients of the contactingobject might translate or rotate in the hand and thus be
surfaces are known, the problem can be formulated in terne¥ploited in tool use and in-hand manipulation to actively
of the Grasp Wrench Space (GWS) [2], [3]. However, it ishange the pose of the object in the hand — either through

speci ¢ motion or interaction with the environment. This is

The authors are with the Computer Vision and Active Perception Labg|gg commonly done by humans, for example prior to putting
Centre for Autonomous Systems, School of Computer Science and Com ’

munication, Royal Institute of Technology KTH, SE-100 44 Stockholm & key in a keyhOIG_ we may change its orientation between
Sweden. e-mail: f fevb jyaseminb jccs jyiankar jdani g@kth.se the ngers by pushing the key toward a surface.

Fig. 1 : A dual arm robot setup for estimating maximal allowable
forces and torques for a grasp.



Thus, differently from commonly addressedasp affor- learning of grasp stability and grasp affordances. Our pre-
danced9], we facilitate the system to identifjnanipulation vious work on grasp stability assessment performs learning
affordances Our method uses force-torque and propriocepmainly through tactile (cutaneous), proprioceptive and visual
tive feedback different from commonly used tactile or skirfeedback in order to predict the stability of the grasp prior
sensors which in practice can be fragile and easily dante lifting and manipulating the object [8], [14]. In [7] the
aged. However, when possible, the cutaneous and kinesthgiioposed system learns grasp affordances which are de ned
methods can be integrated resulting in a more biologicallgs hand-object relative poses that lead to successful grasps
inspired approach [1]. Our approach also takes advantage a particular object. These affordance densities are learned
of the dual arm capabilities of humanoid robots since ththrough exploration and visual features. The main strength
training actions can be executed autonomously through duafl these learning approaches originates from the fact that
arm manipulation procedures. Fig. 1 shows our dual-artihese do not require prior knowledge of physical contact
robot as an example of a platform that can be used tmarameters as the system is trained using supervised learning
implement the method we propose in this paper. without explicitly modeling the physics of grasping.

The paper is organized as follows: Section Il presents the
related work, Section Il our learning framework, including
the friction model and the use of Gaussian Process regressi
while in Section IV we proceed to describe how our systen
learns manipulation affordances from doing regression on tr v !
static friction. Finally, we provide our experimental results

in Section V as well as the conclusions, discussion on th
results and future directions in Section VI. ' i ¥ { i !
Il. RELATED WORK

]
Early works studying the physics of robotic grasping

and contact between rigid bodies are reviewed in [3]. Tht
review addressed the basic closure properties of grasps, for
and form closure, which describe the equilibrium condi- i
tions of an object grasped by a robotic hand by assumin
frictional and frictionless point contacts respectively. Given
that friction forces play a central role in robotic grasping,
some of the works reported in the literature have focusedfig.- 2 : Cutaneous and kinesthetic components of haptic sensing

on studying their properties [5], [10]. These studies coveind perception [1], [15]. Highlighted in bold are the kinesthetic

not only the translational Coulomb friction, but also thecomponents which we consider in our approach.

rotational friction. Moreover, by combining different sensor

modalities (tactile and force-torque) it is shown in [5] that Our_ wor_k makes use of the physics models of _frlctlon
- . . escribed in the seminal work of [5], [10]. However, instead
it is possible to detect and control both translational ang

rotational slippage. of employing geometrical, analytical or signal processing

. . . . . .. based approaches [2], [4], [5], [11], [12] we follow a
for?:gzld:z;\(t)igy?rl:;gt:]hee gggﬁtlsso?f grrssgén?natnedrrtnhse gflctt::;[(]inesthetic learning approach for predicting slippagg. In this
capability to counteract external disturbances has been Os%nse, our W_ork fOHOWS. more closely approaches n which
of the main research questions in the grasping communit{he robot rstinteracts with objects and assesses their contact

, ; dnd friction properties prior to executing tasks [13]. Our
In order to plan stable grasps with robotic hands, many 9"a%ethod also follows the motivation behind learning based
planners have been proposed in the literature which optimi%e proaches in order to deal with the issue of modeling errors
these quality measures [2], [11], [12]. These planners ag%d uncertainties in grasping [7], [8], [14].

constructed in terms of approximations of wrench spaces OF\vjithin the broader scope diapticsensing, which consists

heuristic a_lgorithms that consider a subse_t of a wrench SPa%-hoth cutaneous and kinesthetic sensing as shown in Fig. 2,
The main dram:bac]ikhof thgse metholijs IS thatkthes? requisgy approach falls under the subcategory of kinesthetic sens-
precise 3D models of the object as well as prior knowledge %g and perception while most of the related work discussed

the friction coef cient and the location of the contact pointsg ' including our own work on grasp stability assessment

of the robot's hand. _TO cope with this p_roblem, [13] PropoS€gy, /ey mostly the domain of cutaneous/tactile sensing [4], [6],
a set of manipulation actions to estimate properties su Q] [14]

as weight, stiffness and friction in order to set appropriat
grasping forces. I1l. PHYSICS AND LEARNING MODEL

In order to overcome the uncertainties and problems with The main objective of our system is learning the maximum
modeling errors in grasping, learning approaches have alstatic friction forces and torques for various grasp con gura-
been proposed. Example works of [7], [8], [14] considetions through force-torque sensing. In this section we present




the modeling aspects of our framework, beginning with @bject starts slipping due to the loads exerted on the object.
description of the friction model used and the selection df the tangential forcd; applied on the object is above the
input features for training. We nalize the section with acurve for a given applied torque , then the object will slip
brief overview of Gaussian Process regression and explaamd the grasp is thus unstable.

how we apply it within our work.

A. Friction Model ¢
slip

According to the Coulomb friction model, when an exter- 5 ~ h(=)
nal force is applied parallel to the surface of contact between

Slip region

two bodies, there is a reaction friction forEe which relates 4
to the normal forcd,, according to the following inequality _
Z.3
ff sfn (1) =
2l
where s is the static coef cient of friction. This equation _
holds until the external force exceeds the maximum static Al Non-slip
friction force. The object then starts slippping when Eq. (1) region -
. . . . . . |
becomes an equality. From this point, a dynamic friction o = = o= v N
force with a lower friction coef cient starts acting on the = [Nm]

object as depicted in Fig. 3. The peak of this curve correfig. 4 : Slippage boundaries; = h( ) represents the boundary
sponds to the maximum static friction forfe;, given by for slippage of objects under combined translational and rotational
shear whilef; = hjin ( n) represents a linear approximation fof

fsip = sfn (2) as proposed in [5].
The static torsional friction typically displays a nonlinear A number of mathematical approximations have been for-
behavior given by mulated in the literature to describe this slippage boundary.
We will use the linear approximation described in [5] that
sdip = sfa3 (3) de nes a conservative bound on the magnitude of the forces

. - and torques that cause slippage on an object. This linear
where ¢ depends on geometric and elasticity factors of '[h%Ound is denoted b§i( n) = hin ( ) in Fig. 4 and can be
contact [5]. However, slippage still occurs at the point in . thn)= lin A n) 7T

. - . . . expressed using the following equation:
which the friction torque reaches its maximum value, which

we denote asgjjp -
LI ()

S S

B. Learning Framework

Our goal is to learn the mapping between a set of
input features X) and the resulting maximum friction
forces and torquesY(), which is a regression problem
due to the continuous outputs. While there are several
types of regression techniques that could be used within
our framework, we have chosen Gaussian Process (GP)
regression which can capture the nonlinearity in the data
and provide estimates for uncertainty in the predictions.

N
S}
T

friction force [N]
&

101

I I
05 1 15

55 s e 1) Gaussian Processessiven a dataseD = fX;;yigL,
with n observations wherg; 2 <N andy; 2 < is a scalar

Fig. 3 : Translational friction force exerted on an object held in : oA .
a robot hand. The peak of the signtly, denotes the maximum output, regression analysis aims at learning a model for the

static friction force at which the object begins to slip. relationshipy = f (x) + " which is composed of a latent

. . function of the input and a noise componéntAs a result
In order to achieve a more general physical model fo&c this learning, given a new input , the aim is to obtain

pred?ction, we take in.to con;ideration the effept of botr}he predictive distribution foy .
rotational and translational friction forces as discussed in
[5], [16]. When an object is subject to both rotational ancbI
translational shears, the translational and rotational frictio
components become correlated as shown in Fig. 4. The curve GP  (m(x);k(x;x%) (5)

ft = h( »), wheref; is the component of the force tangent

to the contacting surfaces anglthe component of the torque  The mean function is assumed to be zero. The covariance
in the normal direction, represents the boundary at which tHfanction expresses how similar two output$x;) andf (x;)

2
time [s]

A GP [17] de nes a distribution over functions and is
arametrized by a mean and a covariance function as



are given the inputs; andx;. Our covariance function is friction forcesf;, intheyy zy plane and friction torques

based on the squared exponential, which is given by sip around thexy axis of the tip of the hand reference
X x)? frame as shown in Fig. 5, given that these are the directions
k(xi;xj) = #expl #] + 2 (xi;Xj):  (6) in which the object can move within the hand. Forces and

_ _ torques around the remaining axes are trivial to learn since
The hyperparameters of the covariance function, n;l), they will be constrained by the operational safety limits of

are optimized based oD, where ; denotes the signal the hand, given the geometry of the grasp.
variance, , is for the noise variance anldis the length- IV. TOWARDS L EARNING MANIPULATION
scale which determines how relevant an input is, i.el, if ’ AFFORDANCES

has a large value the covariance will be independent of that ) ) )

input. Once the robot has interacted with an object and learned

We are interested in the conditional probabilityh® maximum friction force& = [fsip ; sip I" for a range
p(y jD:x ) as we want to nd how likely is a certain of grasp con gurations, it can use this information to infer
prediction fory , given the data and the new input. BasedVhat type of motions the object can withstand given the
on a trained GP model, the estimate foris given by the current grasp. The details of the training data generation for
mean value at the test point with the con dence being th¥&@ming are provided in the next section.

variance. The interested reader can refer to the literature " @ given wrenchw measured by the robot while
[17] for additional details on Gaussian Processes executing a task, the robot can detect how close the object is

2) Feature Selection:As an input to the regressor, we to sllpplgg ?ccohrdlng.to the modgl d|sgqssid n bSe'ctltc:n Iél'
need a set of informative features, that can reliably A. In order for the object to remain xed in the robots han

represent the behavior of the maximum static friction forceg?_e measgjreddforce should lie below the torque dependent
and torques. In our case, we have selectecktcemponent SlPPage boundar( )

of the handH pose with respect to the obje€t as shown fo <h(,) 9

in Fig. 5 wheref, and ,, are the tangential force and normal torque
components of the wrench measured by the robot.

We have selected this feature for illustration purposes, yet !N the training stage we isolate the translational and
more features can easily be incorporated into the systefigtational components of the friction and thus we can approx-
such as for example the joint angles of the ngers and thelm"’_‘teh(_n) Ilnea.rly with h"n.( n) E’y joining the end points
grasping force which can modify the friction forces presen ft; n) = (fsip;0) and (ft; n) = (0; sip). In the case
in a grasp. If more features are incorporated into the syster‘ﬁf, a linear approxmatlon the foIIow[ng conqlmon ensures a
a preprocessing stage with dimensionality reduction woulgteble grasp in terms of zero relative motion between the
be necessary [18]. object and the hantvg = 0:

fo <hin(p)

X = OXH (7)

(10)

fs\ip .
ft < Tip n + fSle

Thus, our approach makes it possible to identify stable
grasps through identi cation of forces and torques that can
be applied on an object before slippage occurs. In a broader
sense, the methodology also identi es directions of motion
constraints — that is, in which directions the object is more
likely to translate or rotate.

In the case of the grasp studied in this work, see Fig. 5,
the model would inform that the object can translate in the
Y4  zy plane and rotate around tixg axis. Moreover, if

Fig. 5 : Grasp preshape used for training on the maximum statig large torque is detected around the axis with relatively
friction forces and torques, with the corrc_as_ponding reference framggw forces intheyy  zy plane then we can expect the object
of the hand and the object used for training. to rotate around the ngertips rather than translate once the

The outputsY of the regression system are the maximunforce-torque measurements reach the slippage boundary of

static friction force and torque Eq. (4).
fo This knowledge is necessary for manipulation tasks where
Y = slip (8) a predicted slippage of the object may be facilitated to
slip

complete a task. An example scenario is shown in Fig. 6,
which can be measured through force-torque sensors by which the robot exploits the rotational slippage to pour
interacting with the object. We isolate the components dhe contents of the cereal box into the bowl by letting the
Y and train two GPs, one for the translational frictity),  box rest against an edge of the bowl and allowing it to rotate
and one for the rotational friction, . In our case, we learn slightly in the hand while the manipulator moves upwards.



Fig. 6 : Example scenario of a pouring task with rotational slippage.

force [N]
torque [Nm]

g |
il \”\/ EEV “\Wﬁ @

7 time [séc] ” ’ b ' - ' ti]rile [séc]
Fig. 7 : Sliding action for training on the maximum static linear frictiby, and its corresponding force and torque pro les.

25 3 35

V. EXPERIMENTAL EVALUATION the object on a corner so that the object rotates around the

Our experimental setup consists of a dual arm robot 3¢ axis of the tip of the robotic hand. We selected this action
shown in Fig. 1. Each manipulator has 7 DOF and theggiven that we expect collisions with the environment to be a
are equipped with ATl Mini45 6-DOF force/torque sensor$Ource of rotational slippage when the robot performs tasks
mounted at the wrists and they are sampled at a 650 H4th the object.
frequency. We start by describing the training data collection For veri cation purposes we also trained a separate GP

process. for slip. by_ applying a d.iff.erent type of training action as
- _ shown in Fig. 9. This training action consists of performing
A. Training Data Collection a rotational motion with the grasping hand while the object

For collecting training data autonomously with the robotis kept on a xed grasp with the parallel gripper shown on
we use three dual arm manipulation procedures: one sliditige right. Even though in this case we also train fgp as
action for measuring the maximum static linear frictiap, =~ With the pushing action, we can expect different outcomes
and the other two are a rotational motion and pushing actidnom the learning given that each training action represents
for measuring the rotational frictioni . a different kind of interaction with the environment. The

Fig. 7 shows an illustration of the sliding action alongpushing action gives g, for tasks in which the object
with the forces and torques measured during the executios. grasped by the robot's hand and it collides with the
In this case the robot holds the object rmly with the parallelenvironment while being grasped by the robot hand, whereas
gripper shown on the right while the hand on the left, whichhe rotational motion models a task in which the object is
is the one we train for, slides up in thyg direction of the xed with respect to the environment and the robot's hand
hand. The y-component of the force sigfigl measured in rotates around the object.
the force-torque sensor of the arm is then similar to the one )
shown in Fig. 3, and g, is obtained from the peak of the B- Experimental results
signal. We collected 14 training examples for the friction force

For obtaining training data for the maximum static frictionand 10 training examples for the torque by varying the rela-
torque gjp , we used the pushing action shown in Fig. 8. Thidive pose between the robot hand and the manipulated object
action is performed by grasping the object with the hand walong one dimension as described in Section V-A. To learn
train for, while the parallel gripper shown on the right pushethe Gaussian Processes and obtain the hyperparameters we



Fig. 8 : Pushing action for training on the maximum static rotational frictigp .

Fig. 9 : Rotational motion for training on the maximum static rotational frictigg .

used Rasmussen and Nickisch's Gaussian Process Regression ~ **
and Classi cation Toolbox [17]. The hyperparameters were 2
calculated by maximizing a Gaussian likelihood function.
Fig. 10 shows the resulting learned Gaussian Process for
fsip . This plot shows the mean function of the learned GP _“5
(solid blue line) which follows the training points, along £
with the two standard deviation con dence bounds (dashed =
red lines) enveloping it. Given this result, we take the lower ‘

con dence bound as stability boundary fog, given that 1
the Gaussian Process predicts that 95% of the points of the 08 _
process will lie above this boundary. T"z:‘gg??‘nfﬁ”é?}rﬁéds
-6.5 -6 -5.5 -5 -4.5 -4 -35 -3 -2.5 -2 -1.5
65 ; Ox [cm]
60 Rt Fig. 11 : Learned GP of g, trained by using the pushing action
ol . I e shown in Fig. 8.
50 ,,’ Tadom Yot A 4
= 45,\\ . A A LA Fig. 11 shows the learned Gaussian Processsfgr when
B RS PN SV SRR B using the pushing action. Once again, we manually pushed
- AN \ the object while it was grasped by the robot in order to collect
Y A 1 the test points shown in the gure. These test points show
I A . that the pushing action and the learned Gaussian Process
» ' — mean funciion succeeded in capturing the behavior gf, with respect to
[ - - -2< conf. bounds [ . .
H R faning points the object to hand relative pose.
ol ‘ ‘ ‘ ‘ : ! _ _ _
® 7 ® o-iH[cm]Jl 2 2 * Fig. 12 shows the result of learning;, by using the

Fig. 10 : Learned GP offgp with two-standard deviation rotatipnal motio_n,while_we coIIectt_ed test points by manually
con dence bounds. The solid blue line is the mean function oPUSNINg the object as in the previous case. The clear offset
the GP while the dashed red lines are the con dence bounds. Thetween the learned GP and the test points shows that
green square markers correspond to the training data, while ttige training and testing actions are not anymore physically
yellow triangular markers correspond to the test set. consistent. In the case of the rotational training motion, the
interaction between the active robot hand and the object
For testing and validating the learned GP, we manuallinvolves both forces and torques, while pushing actions,
pushed the object while it was being grasped by the robperformed either by the robot hand or manually by ourselves
in different con gurations compared to the ones used fofor testing, exert only forces on the object. This result can
training. Fig. 10 con rms that the sliding action performedthus be used to inform the system that the action is not
on the object is valid for trainingsi, as most of the test proceeding according to the model and provide the basis
points lie above the lower con dence bound of the Gaussiafor replanning. This is something we plan to adress in the
Process. subsequent work.
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— mean function
- = =2< conf. bounds
2 tetpons 5
T R g
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Fig. 12 : Learned GP of g with two-standard deviation [6]
con dence bounds trained with the rotational motion shown in Fig.
9.
(7]

VI. CONCLUSIONS ANDFUTURE WORK

In this work we have presented a learning framework
for prediction of slippage of grasps through kinesthetic[8]
perception which provides a basis for learning manipulation
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A Probabilistic Framework for Task-Oriented
Grasp Stability Assessment

Yasemin Bekiroglu, Dan Song, Lu Wang and Danica Kragic

Abstract—We present a probabilistic framework for grasp arm and the hand. The relations between many grasping-

modeling and stability assessment. The framework facilitates relevant variables mentioned above can not be addressed
assessment of grasp success in a goal-oriented way, taking into simultaneously

account both geometric constraints for task affordances and Probabilistic f ks based hical dels h
stability requirements specic for a task. We integrate high- robabilislic Trameworks based on graphical models have

level task information introduced by a teacher in a supervised Proved to be powerful in various elds with high-dimensional
setting with low-level stability requirements acquired through  complex problem domains [4], [9], [10], [6]. Graphical
a robot's self-exploration. The conditional relations between mgodels encode the relations between variables through their
tasks and multiple sensory streams (vision, proprioception and - -ohapijistic conditional distributions. Such distributions do

tactile) are modeled using Bayesian networks. The generative t ire th iables to h th derlvi
modeling approach both allows prediction of grasp success, MOt require the variables 1o have the same underlying rep-

and provides insights into dependencies between variables and resentations. Therefore, high-level symbolic variables such

features relevant for object grasping. as task goals can be naturally linked to the low-level senso-
rimotor variables such as hand con guration. Furthermore,
I. INTRODUCTION the model can be combined with the probabilistic decision

making where grasp plan and control can be performed

A lot of current work in robotics is inspired by human ) _ i ; .
Qrough inference even with noisy and partial observations

goal-directed behavior [1]. In humans, goal-directednessl
obtained through multiple development stages, both throu
the sensorimotoexploration(trial and error) and through the

Some recent work in the area [12] exploited these strengths

observationof others interacting with the world (imitation 2"d linked the grasp plan to the manipulation tasks through
learning) [2]. The former is addressing the problem opayesian networks (BNs). The work emphasized the geo-

learning through self-experience in order to associate tHBEUIC constraint of a task for planning grasps based on
sensorimotor signals to the direct motor effects. The Iatte°1’mu_latGd_VISIon mputs. Tasks, hoyvever, also require various
involves human supervision, which is especially bene cia[laniPulationspouring needs rotating a bottle that contains
for ef cient learning of complex tasks. Robotic approacheé'qu'(_jj andhand-ovemeeds o_nly parallel tra_nsportatlon._The
often focus on just one of these two aspects. Linking betwediiability demand therefore differs due to different manipula-

the two is often through manual encoding [3] or applied téions rgquested by t_asks. ) )
simple tasks [4], [5], [2], [6]. The main challenges originate In this paper, we integrate this task-dependency with sta-

from the differences in commonly adopted representatior@;"ty assessment. A method combining self-exploration and
[7]. supervision is implemented, where self-exploration enables

The gap between the representations is especially visibtfée robot to learn about its own sensorimotor ability (how to

when dealing with robot grasping tasks. For example, grasp an object to stably lift and manipulate it), while human
a robot is given a high-level task command, egaur tutoring helps the robot to associate its sensorimotor ability
me a cup of coffeeit needs to make decision, on which© high-level goals. In particular, we use a probabilistic model

object to use, how the hand should be placed around tﬁ%integrate the semantically expressed goal of a task with a
et of continuous features. We present an extensive evaluation

object, and how much gripping force should be applied s h q H | robot platf iped
that the subsequent manipulation is stable. Several sensor) € proposed approach on a real ro ot pat_ orm equippe
h multiple sensory modalities (vision, proprioception and

streams (vision, proprioception and tactile) are relevant foy"™n
manipulation. The problem domain and hence the state spé@g"e)' The results show that the proposed model gccurately
becomes high-dimensional involving both continuous angStimates grasp success both at the stage of planning (before

discrete variables with complex relations. Traditional dy_execunon in real environments) and during grasp execution.

namic systems approaches in robotics e.qg., [8] focus mainly Il. RELATED WORK
on optimal planning and control of hand trajectories, hence

the state space only includes kinematic parameters of thePIanning and executing a grasp that is robust and stable is
an important topic in grasp research (see [13] for a recent re-
Y. Bekiroglu, D. Song, L. Wang and D. Kragic are with the centreVi€W). The quality measures of stability are mostly based on
for Autonomous Systems and the Computer Vision and Active Perceptidiorce-closureof a grasp wrench space. A force-closure grasp

Lab, CSC, KTH Royal Institute of Technology, Stockholm, Sweden. Emailmeans that any disturbing external forces can be balanced by
f yaseminb,dsong,luwang,dani g@kth.se . This work was f lied h H h h
supported by the EU through the projects eSMCs (FP7-1ST-270212) arme orces applied at the contacts. However these approaches

RoboHow.Cog (FP7-ICT-288533). assume perfect knowledge of the contacts between the hand



and the object, which is usually an unrealistic demand on I1l. M ODELS

real setups. On the other hand, experience based approach§ge ysex to denote a set of features relevant for grasp-
where the robot learns good grasping con gurations througilp,g tasksT. X originates from three groups of features,
real execution [14], [15], [16] have proved to be successfu#.o; A:Hg, where O denotes an object feature set (from
But a good grasp should not only be stable, it also needssual sensing) A denotes an action feature set that rep-
to be suitable for the task, i.aeyhat do you want to do after resents gripper con gurations (from proprioception) afd
you lift the object Very few work has put effort on planning denotes a haptic (or tactile) feature set. Detailed feature
grasps in a goal-directed manner. Xue et al. [3] manuallgiescriptions can be found in Section IV-B. We propose to
encoded the expertise about task semantics provided byuse a generative approach, the Bayesian network [20], to
human tutor. A recent work [12] used Bayesian networks tmodel this grasp space. The goal is to apply the model for
learn the grasping task constraints that depends on a setbafth task classi catio® (TjX ) and inferring the distribution
geometric attributes from both objects and grasps (e.g., haofl one variable conditioned on a task and other variables
positions). However manipulation tasks do not just concerR (X;jT; X;). P(TjX) predicts how likely a grasp will suc-
geometric constraints. fouring task not only requires the ceed for a task, anl(XjT;X;) conveys domain knowledge
bottle opening to be unblocked, but also needs the grasp dach as the expected value of a tactile feature given a task and
be stable enough to rotate the bottle. We need to link tagi object. To evaluate BN's classi cation performance, we
information with stability in real world scenarios. compare it with a discriminative approach, Kernel Logistic

A natural extension is to combine supervised task learningegression (KLR). In this section, we provide an overview
with experience-based stability learning. This allows stabilit@f the two modeling approaches.
to be assessed in a task-oriented manner. This is especiaAIy
bene cial for energy-efcient control: when a task (e.g.,
hand-ove) does not require strong grasping for dif cult Kernel Logistic Regression is a nonlinear probabilistic
manipulations (e.g., waving for th@ammeringtask), a classi cation model. Given a class variable (in this paper,
relatively smaller gripping force can be applied. Combininghe taskT) and the input feature set (in this paper |
task with stability was rarely studied. Some work [17], [18]f O;A;H g as seen in Tab. I), KLR models the probability
de ned task-related grasp quality measures which combine?f the class variabl® (TjX) through a weighted sum of the
task knowledge with analytical stability measures used ifimilarities (kernelsK) between a testing point and each
traditional grasp stability studies. Such approaches therefd#@ining pointx; [21]:
also suffer from partial and uncertain knowledge of the world o !
in real setups. Ptix;w) = 7 rexpf ", WiK(Xixi)g @

Probabilistic learning is a powerful paradigm for modelin
and reasoning about the noisy and uncertain real world d
[4], [9], [10], [6]. For robot grasping, planning and control
rely heavily on vision sensing with typically noisy and
incomplete observations. Probabilistic approaches combining
vision and tactile sensing [19] provided an on-line estimate
of belief states which were used to plan the next action.
Toussaint et al. [4] proposed a coherent control, trajectomyhereK is the kernel Gram matrix, withC; = K(X;;X;),
optimization, and action planning architecture by applyingnd is the regularization constant. During training, the
the inference-based methods across all levels of represerkarnel bandwidth parameters andare chosen by cross-
tion. Montesano et al. [6] used Bayesian networks to learyalidation.
object affordances, and applied them to goal-directed moti
planning.

However, to our knowledge, no one has proposed %

a
I

Kernel Logistic Regression

Y91 this paper we choosé to be a Gaussian kernel. Training
PKLR model is to nd the weight vectow that maximizes
the regularized probability of the data

logp(yijxi;wi) + tracgwKw ") )

i=1

OE?. Bayesian Network
A Bayesian network [20] is a probabilistic graphical model

model that addresses both task-oriented grasp planning 3_t efr:/cgc\j/e.s.t.ht.e\ch)lnt ?E'Strfu“%n qf "’:s et oftraniom varlables
stability-oriented grasp execution in real environments. - b|2dn€|‘? d?‘c tng €inthe ne wc:r reg.rt‘?se”ﬁ
this paper we close the learn-plan-execute loop where yfee variable, and the directed arcs represent conditional in-

robot learns task knowledge from human teaching, an(aependenmes. Given a structure of the netwgrand a set

grounds this knowledge in low-level sensorimotor system?;f local conditional probability distributions (CPDs) of each

through self-exploration (manipulating the object) in a rana”ableV" the joint distribution of all the variables can be
environment. We use Bayesian networks to model Condg_ecomposed as

tional relations between task and stability knowledge with

a multitude of features from vision (simulated in this work), p(v) = p(vj ;S)=  p(vijpa;; i;S); 3)
proprioception, and tactile sensing. The generative modeling i=1

approach provides a exible framework to guide detailedvherepa; denotes the parents of nodlg and the parameter
grasp planning and execution in a task-directed way. vector = ( 1;:; m) species the CPDs. Learning a



BN includes discovering from a dataséty how one vari- the network is a multinomial distribution over each of the
able depends on others)( and 2) what the conditional discrete states of the network,
in-depe_ndent_:ies between different varigbles Be (The pvi ! U = Uj): (5)
former is an instance of parameter learning and the latter of " babil ‘ bl ) its di
structure learning. Various algorithms and techniques hafs@ting as the probability of variableV is at its discrete
been developed to learn a BN in different model and dajteui When a set of other variables; is observed to be
conditions (see [22] for a review). at the stateU; ".

In this paper, we use the Bayesian network to model the. Generative Model

joint distribution of a set of task and stability-relevant vari- A Bayesian network is a generative model where not

ables (see Tab. 1), i.eY = fT;XgwhereX j TO;A;Hg. only the class probabilitieg(TjX ) can be inferred as KLR,

To cor_rectly d(_ascrlbe a grasping task, both conceptugl h'gBUt also the class conditional distributions can be predicted
level information and continuous low-level sensorlmoto&

bl red. Th iables in thi K b X|jT). The former means we can use a BN to predict
\é‘?ma es are reqll(leeb. € (\j/arla €s in this ch_ ;rﬁ %ccess of a grasp to achieve a task given observed object
iscrete (e.0.tas ;0 c), and continuous (mosD; A; and action features by inferring the posterior distribution
features). The continuous features such as hand grasp con

i be high-di ional with | babilisti TjO;A), i.e., to classifyT. The latter means that we can
uration can be fhigh-dimensional with complex probabriisticq, nd, given an assigned task, the posterior distribution

distributions. . . . .
. . . of the objectp(OjT) and/or grasp featurgqAjT; O). This
Lee_lrnlng BN structures from_ both continuous a_nd discre rovides the basis for the robot to select objects that afford a
data is an open problem, particularly when continuous da

en task, e.gsomething to drink froprand plan an optimal

IS h|gh-d|m_en5|onal and sampled frqm complex d'Str!bUt'qnsgrasp strategy using the object to ful Il the task requirements.
Most algorithms for structure learning only work with dis- In addition, Bayesian networks allow us to infer the do-

chrete yaréiablez. 'Irherefore, acommon applroalchd|§ to convertyin knowledge through data. The network structure depicts
the mixed modeling scenario into a completely discrete ong, i, ence diagram illustrating the conditional relations
by discretizing the continuous variables [23]. In this paper Wheyyeen different variables. Also the class conditional on

use a two-step discretization scheme. For a hlgh-dlmensmr}g ture variables provides an intuitive evaluation of task and

continuous variablX , the data in original observation SPaCe;apility-related requirements.

Is st pr_oject_ed to a Iow-dimerlsional space, _and t_hen a Another strength of the BN is its ability to infer the

parametric mixture model (multi-variate Gaussian mixture) a5, syccess with partial observation. In a task-based grasp
is learned to model the data density in this space, adaptation scenario (see Fig. 7), this is especially important
g because we can predict the grasp success given observation

p(x) / kN (Xjui; ) (4)  on only object features and grasp parameters planned in a

k=1 . simulation environment. Grasp replanning therefore can be
where ux and  are the mean and covariance of eachyiiated without having to execute an unstable grasp using
Gaussian component, ang is the mixing proportion. The o5 ropot platforms. Though this can also be done using

parameters of the mixture model are learned using thgscriminative models, each observation condition requires
standard EM approach. The number of the clusters for ea%ining of a separate model.

variable is found through cross-validation where the task
classi cation performance with the BN is maximized. IV. M ODELING SENSORDATA AND DATA ACQUISITION

We use a greedy search algorithm to nd the network e will rst describe the data acquisition process which
structure (the directed acyclic graph, or DAG) in a neighboryses both a grasp simulation environment and a real robot
hood of graphs that maximizes the network score (Bayesigtatform. We then present a detailed description of the
information criterion [24]). The search is local and in thesensory data representation.
space of DAGs, so the effectiveness of the algorithm relies .
on the initial DAG. As suggested by Leray and Francoié: Data Acquisition
[25], we use another simpler algorithm, the maximum weight The goal of the data acquisition is to obtain a set of data
spanning tree [26], to nd an oriented tree structure as thinat instantiate the variables©; A;H; T g. We use a 7-dof
initial DAG. Schunk dextrous hand equipped with tactile array sensors.
The hand is attached to a 6-dof Kuka arm that is mounted
on a robust shelf. Seven home-environment objects including

A trained network de nes the factorization of the jointthree bottles and four mugs are used for the data generation.
distribution of the observationgp(V) = p(T;O;A;H), In Grasplt! [28] a Schunk hand model is used for planning
in terms of a graph of conditional dependencies. We cagrasps on the corresponding object models and extracting
now compute the posterior distribution of one or grougeatures. The seven object models that capture similar sizes
of variables given the observation of others. A commoind shapes of the real objects can be seen in Fig. 3.
way for doing this is to apply the junction tree algorithm Fig. 1 shows the schematic of the data generation process.
[27]: an algorithm of local message passing to comput€o extract the features in Tab. I, we rst generate grasp
the distribution of the variables of interest. The output ohypotheses using the grasp-planner BADGr [29]. Each grasp

C. Inference in Bayesian Networks






491 Hypotheses Added with Noise All Experiment Objects

feature sets. We adopt a stopping point &@54o threshold

of classi cation accuracy. The subset of features with the
highest score discovered up to this point is selected as the
satisfactory set of features. Fig. 4 shows which variables have
been selected for each of the three tasks.

3) Optimizing Data DiscretizationThis is a step for only
Bayesian networks. The structure learning requires discrete
data. However, this leads to loss of information. When the
resolution is low (i.e., a few discrete states), the variance in
Zﬁe original continuous domain that is discriminative may be
smoothed out. On the other hand, for the variables that are
not discriminative, a high resolution will jeopardize the clas-
si cation performance due to the curse of dimensionality. We
therefore want to nd an optimal granularity in Eq. (4)),
on a small set of variabled ¢vex; rad;fcon;iC;aNV g).

The optimal granularity maximizes the task classi cation
performance with the BNs. Tab. | shows the resulting number
of discrete stateM for each of the three tasks.

Fig. 3. Data Collection: The left panel shows grasp examples generat
on the two classes of objects (mugs and bottles). The right panel shows
the objects.

TABLE |

FEATURE SET WITH DIMENSIONALITY D (LOW/HIGH) AND THE
NUMBER OF DISCRETE STATESM (OPTIMIZED FOR EACH OF THE THREE
TASKS [HAND-OVER, POURING, DISHWASHING] AND SHOWN FOR THE
SELECTED FEATURES$. T, O, A1.2:3 ARE FROM THE SIMULATION, A4
AND H ARE FROM THE REAL ROBOT

Name D M Description

T task 2 Binary task identi er VI. M ODEL EVALUATION
01 obcl 2 Object class . .
0, size 3 Object dimensions We evaluate the Bayesian network-based modeling frame-
O3 cvex 1 [5, 5, -] Convexity valudo; 1] work in two aspects: classi cation performance, and how we
Ay dir 4 Quaternion hand orientation  ¢an use the generative model for understanding the problem
A, npos 3 16 Unit grasping position d .
Az rad 1 [15, 14, 14] Radius ohpos omain. . .
As fecon 27 [7,7,7] Final hand con guration For classi cation performance, we compare the BN mod-
:1 !g gﬁg 1 - 22DD pressure diStftibt!gon eling with the discriminative approach KLR under two ob-

2 | P pressure centroi . . . . ) .
Hy pG 3/9 3D pressure distribution servatlop COI’]dItIOI’lS: the pa}rt|al observation vvhen only simu-
Hs pC 3 3D pressure centroid lated object and action variables are observieD( A1.2.3),
Hs aNV 23 [55 9 Average normal vector and the full observation when haptic information akgl are

also available after grasp execution in the real environment
iO:A: i i i 0 -

separately for each task and task-speci c BNs with binar -IL—JJtOsp'?;tg )- We perform this oveb0 trials with 20% hold

task variables are built Under these conditiong0 trials of cross-validation with

1).Dimepsiona|ity Reduction‘j’here are many t'ech.niques 20% hold-out splits are performed. In each trial, for each
for dimension reduction [30]. Ideally a cross-validation pro- ’

cess should be used to select optimal technique and their ‘{’%stg;ifegqsgﬁfblae;e ;;T;e?o%iés \;/v'?t;hHo)nIV;Itsr;maLlll-

"9Bted variables, and 33N (O; A;H) with all the selected

a fuII-spaIe model selection .W'" be expensive. Cons'qe”ngariables. We do not need to train BN with only simulated
the main focus of the paper is not to evaluate dimension re-

variables BN (O; A1.2.3)) because the task probability can

drt:ctlon tscrnnllcu;ec':sAwg 1dic'de to se]Ice_E[:t a S'n%l$tm$thr?]d' dvi inferred in BNs with partial observations. When train-
choose rerme [31] because of its capability to mo N g KLR models, we use the continuous low-dimensional

gonm-h_nnea_:_ rQarlleds WtEIChr IS ﬁ_:hadr_?:tir .Ofn OIL.Jtr Ft)rObIti"?epresentation. And when training BNs, we use the optimal
omain. 7ab. 1 shows the resulting dimensionaiity 10getnefisqete gata. In each trial, both structure and parameters of

W'tzh tCerprtl)glgmgl Idlmt_er;]s\f/nallty ?r? aHT'(I?tOCIiI V?rla;_l:t):]ems. 32 the BNs are learned. Since each trial uses different set of
) Variable SelectionWe use the algor [32] training data, the resulting structure can be different.

ﬁr?éﬂorm tII: N S ptlmta l \ijana_\ble tielel\jt'ol? fo:stlhekthtrei iasks. For each task, the inference results on two variables are
works Dy st inducing the Markov blanket ot the shown:npos and one of the selected H features for the task.

target variable to be classi ed. In this paper the target is th@\/e chose one tactile-related feature to show that the BN can
binary task variablel', and its Markov Blanket is denoted

S be used to produce an expectation over sensor data given
by MB (T). Then support vector machine is used to furthe P P g

fask constraints. For each variable, we evenly sample a set of
remove the unnecessary variables inkhB (T) in a greedy ! y P

hill-climbing fashi Th ; tric is the lgointsx in the low-dimensional space for easy visualization.
fi-climbing tashion. The performance metric Is the 1as ‘or each sampled point, a conditional likelihood is obtained

classi cation rate. Exhaustive search through all subsets %ven the three tasks and the object clpgsjtask; obcl) to
features returned iMB (T) is prohibitive, so we adopt a set enerate théikelihood mapsseen in Figure 6 '
of heuristics to form a smaller search space: 1) the subs%t '

must includeobcl and npos because we are interested inA- Network Structures
inferring the conditionals involving these variables, 2) there Fig. 4 shows the Bayesian network structures (DAGs) with
must be at most two features in each of Be A andH  the highest task classi cation performance for the three tasks.



Hand-over Pouring Dishwashing Hand-over Pouring Dishwashing

Fig. 5. Classi cation: The average ROC curves for three tasks. Red is
KLR with full observation Q; A; H ). Pink is KLR with partial observation
Fig. 4. The structure of BNs with the highest classi cation performances(O; A; 3). Blue is BN with full observation®; A; H ). Green is BN with
DAGs of the three BNs each of which models one binary classi cationpartial observation@; A1 3). The transparent regions represent the one
of one task. Square nodes represent discrete variables and circled nodgandard deviation of the true positive rate.

continuous ones. The differences in variable selection among the three

tasks are highlighted by thick border of the nodes.

show that at the signi cance leve.05, the hypothesis is
The represented nodes in each network are the variablgécepted for the KLR, but rejected for the BN. In other
selected using the HITON algorithm [32]. The differencegyorgs, KLR with partial observation performs similarly to
in selected variables between different tasks are highlightggly with both observation conditions. Another result is that,
by the thick-bordered nodes. when real sensory featurdd and A, are not observed,
Considering haptic featuré$, hand-overtask selectiC, the performance drop fodishwashingtask in the BN is
whereagouringanddishwashingasks both sele@NV .iC  higher than for the other two tasks. This is related to the
is a feature characterizing the local pressure centroid of eaglferences in the task requirements of grasp stability which
tactile sensor pad on the ngers, whered$V summarizes pas explained the structural differences depicted in Fig. 4.
the overall pressure distribution considering all the sensofs,y example, wheraNV is not observed irdishwashing
and also the nger con gurations. In other wordaNV — Tjx ), more useful information is lost than ipouring
encompasses stronger information that may be relevant ¢erall, BN modeling provides high classi cation results.
stability especially when the task demands stronger graspiRge prefer BNs since they allow inference on any variable
such aspouring or dishwashing given full or partial observation of others. KLR requires
As to the network structure, all the three tasks have diregfzining separate models for different observation conditions.
conditional relations withnpos and rad. This is natural
since the position of the hand relative to the object is an
important factor in uencing both the affordance of a taskC. Inference
(from which direction to approach the objegpos), and its
stability requirements (how far away the hand is from the Fig. 6 shows likelihood maps in relation to different
object center of masead). For dishwashingT is directly ~features, tasks and object categories. The brighter color
connected t@aNV , whereas fopouring T in uence aNV  indicates higher probability of a successful grasp. On the
throughnpos. This may be due to thatishwashingequires left side, we can see the results p(mposjtask; obcl), where
a manipulation with180 rotation, which, compared t80  the hand positions in the object frame are projected on the
rotation for pouring, is more demanding in terms of graspunit sphere. For thpouringtask, the robot should not grasp
stability. So the task success fdishwashingdepends on the mugs or the bottles from the top, which is re ected by

aNV even if thenpos is also observed. the dark color on thepos sphere. However, top grasps are
o allowed for hand-overtask. Among the two object classes,
B. Classi cation only the mugs afforddishwashingtask, which is indicated

The area (AUC) under the ROC curve is used as they the fact that the likelihood maps are almost completely
performance metric. The ROCs are derived by thresholdplack.
ing the classi er outputs, the probability of task success On the right side, the results of the two tactile features pro-
p(T = trugX). Figure 5 shows the ROC curves for taskjected on the low dimensional space, BQC jtask; obcl) for
classi cation results averaged over 50 trials. Table || showbkand-overtask and 2Dp(aNV jtask; obcl) for the other two
the mean and the standard deviation of the AUCs. tasks are seen. We observe clear differences in these “hap-

In general, the BNs with both full and partial observationgic images” both between the two different object classes,
have good classi cation performances for all the three taskand also between the different tasks. This re ects different
Under full observation, KLR models perform better tharfhaptic expectations” given task and object conditions. For
BNs. However, we note that when the real sensor ddta (the pouring task, we observe that the mugs has a clear cut
and A,) are not observed, KLR's performance drops a lobetween “bad” and “good” regions in tleNV map, whereas
compared to BNs. To con rm this, we conduct a two-sampléhe bottles have more gradual change in the likelihood map.
t-test on the AUC scores over 50 trials of the experimenThe reason may be that the bottles are much taller than the
The hypothesis is: The classi cation performance with full mugs therefore there are more grasps along the longitudinal
observation i€:07 higher than the performance with partial direction on the bottles that have gradual changes in grasp
observation, briefed as “full 4 0:07 > partial”. The results quality.



TABLE Il
MEAN AND STANDARD DEVIATION OF AUCS FOR THE THREE TASKS

Task KLR full KLR partial BN full BN partial
i 0.97 (0.01) 0.90 (0.01) 0.90 (0.04) 0.86 (0.01)
Hand-over 4 0:07 >
) 0.98(0.01) _ 0.90 (0.01) 0.88 (0.02) 0.86 (0.02)
Pouring 4 0:07 >
Dishwashing | 098 (001) ~0.87(0.02)| 092 (0.01) 086 (0.02)
4 0:07 >
Uniform Hand Position Low Dimensional Tactile Features
Bottle (1pos) Mug (hpos) Bottle (C) Mug (C)
T
Bottle (\pos) Mug (npos) Bottle @NV) Mug @NV)
g
Bottle (\pos) Mug (npos) Bottle @NV) Mug @NV)
§
2

Fig. 6. Inference: The likelihood maps of the continuous variables conditioned on task and object class. Left side in inference results shows
p(nposjtask; obcl) for all the three tasks. On the right side(iC jtask; obcl) is obtained forhand-overand p(aNV jtask;obcl) is obtained for the
other two tasks.
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D. Model Application

Ta_sk—» Grasp
We conclude the paper by a task-oriented, stability-based”™" ="
grasp adaptation scenario. The goal is to demonstrate one
way of applying the proposed probabilistic framework. Fig.
7 depicts a two-step grasp adaptation process, where the
rst step predicts if a planned grasp hypothesis affords an VII. CONCLUSION

assigned task (from the simulat€ A;;2;3 features) before  \we have proposed a unied probabilistic framework us-
@t is executed on the rea}l robc_)t, and the second step prediq;fl;,%J Bayesian networks to assess grasp stability in a task-
if the grasp affords manipulation demanded by the task onggiented manner. The framework enables combination of
the grasp has been executed. Here the sensory ikp@sd  ,yman supervision and self-exploration during manipulation
A4 are avallable.whlch. allows more accurate pred_lctlpn Withy encode task-dependent stability requirements. The learned
the full observatiomp(TjO; A;H ) before the object is lifted. network successfully predicts outcomes of a grasping action
Such adouble-guardedystem is bene cial to ef ciently plan  poth in terms of the geometric requirements and in terms
and execute the robot grasping. of the stability demands for the subsequent manipulations.
Fig. 8 demonstrates a grasp adaptation process for tBince the high-level task goals are seamlessly linked to
input pour with this detergent bottlerhe top row shows the low-level haptic sensory outputs, grasp planning and control
grasp hypotheses sequentially produced by a planner. Befae ef ciently entwined. In addition, the generative model
they are executed on the real robot platfop(TjO; A;.2.3)  allows us not only to predict grasp success and task rel-
rejected the rst three hypotheses. This is re ected by thevance, but also convey domain knowledge. We can infer
location of data point (green dot) in the dark region oftructural dependencies between different variables, and form
npos likelihood maps. The grasp replan is triggered until theonditional expectations on various sensory features. In other
fourth hypothesis is found to be good for grasp executiowords, we can reason on which sensory features are most
It is however predicted to fail under the full observationrelevant for a specic task and the robot can perform on-
p(TjO;A;H) (aNV is in the dark region of the likelihood line decision making on what-to-measure, thus optimizing
map). A replan is again triggered until a good grasp is founthe use of sensory data.
with the full observation. The work opens an interesting avenue for future research.

Repla

Fig. 7. Application Diagram: Task-based grasp adaptation.






